Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Voltage-coupled conformational dynamics of mitochondrial protein-import channel

Mitochondria contain multisubunit translocases to import preproteins from the cytosol. The presequence translocase of the inner membrane operates in a voltage-gated manner, but how a preprotein-conducting channel responds to the membrane potential was unknown. A new study identifies a voltage-coupled conformational change in a transmembrane segment of the Tim23 import channel, representing a major step toward understanding the molecular basis of a voltage-gated protein translocase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mitochondrial machinery for import of preproteins with positively charged presequences.
Figure 2: Molecular mechanism of the presequence translocase of the inner mitochondrial membrane (hypothetical model).

References

  1. Nunnari, J. & Suomalainen, A. Cell 148, 1145–1159 (2012).

    Article  CAS  Google Scholar 

  2. Dolezal, P., Likic, V., Tachezy, J. & Lithgow, T. Science 313, 314–318 (2006).

    Article  CAS  Google Scholar 

  3. Neupert, W. & Herrmann, J.M. Annu. Rev. Biochem. 76, 723–749 (2007).

    Article  CAS  Google Scholar 

  4. Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T. & Pfanner, N. Cell 138, 628–644 (2009).

    Article  CAS  Google Scholar 

  5. Malhotra, K., Sathappa, M., Landin, J.S., Johnson, A.E. & Alder N.N. Nat. Struct. Mol. Biol. 20, 965–972 (2013).

    Article  CAS  Google Scholar 

  6. Yamamoto, H. et al. Cell 111, 519–528 (2002).

    Article  CAS  Google Scholar 

  7. Bauer, M.F., Sirrenberg, C., Neupert, W. & Brunner, M. Cell 87, 33–41 (1996).

    Article  CAS  Google Scholar 

  8. Chacinska, A. et al. Cell 120, 817–829 (2005).

    Article  CAS  Google Scholar 

  9. Alder, N.N., Sutherland, J., Buhring, A.I., Jensen, R.E. & Johnson, A.E. Mol. Biol. Cell 19, 159–170 (2008).

    Article  CAS  Google Scholar 

  10. Mokranjac, D. et al. Mol. Biol. Cell 20, 1400–1407 (2009).

    Article  CAS  Google Scholar 

  11. Tamura, Y. et al. J. Cell Biol. 184, 129–141 (2009).

    Article  CAS  Google Scholar 

  12. Schulz, C. et al. J. Cell Biol. 195, 643–656 (2011).

    Article  CAS  Google Scholar 

  13. Lytovchenko, O. et al. EMBO J. 32, 886–898 (2013).

    Article  CAS  Google Scholar 

  14. van der Laan, M. et al. Nat. Cell Biol. 9, 1152–1159 (2007).

    Article  CAS  Google Scholar 

  15. D'Silva, P., Liu, Q., Walter, W. & Craig, E.A. Nat. Struct. Mol. Biol. 11, 1084–1091 (2004).

    Article  CAS  Google Scholar 

  16. Popov-Celeketic´, D., Mapa, K., Neupert, W. & Mokranjac, D. EMBO J. 27, 1469–1480 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. Truscott, K.N. et al. Nat. Struct. Biol. 8, 1074–1082 (2001).

    Article  CAS  Google Scholar 

  18. Meinecke, M. et al. Science 312, 1523–1526 (2006).

    Article  CAS  Google Scholar 

  19. Martinez-Caballero, S., Grigoriev, S.M., Herrmann, J.M., Campo, M.L. & Kinnally, K.W. J. Biol. Chem. 282, 3584–3593 (2007).

    Article  CAS  Google Scholar 

  20. Gebert, M. et al. J. Cell Biol. 197, 595–604 (2012).

    Article  CAS  Google Scholar 

  21. Alder, N.N., Jensen, R.E. & Johnson, A.E. Cell 134, 439–450 (2008).

    Article  CAS  Google Scholar 

  22. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. Nature 423, 42–48 (2003).

    Article  CAS  Google Scholar 

  23. Bezanilla, F. Nat. Rev. Mol. Cell Biol. 9, 323–332 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bohnert and C. Mehnert for discussion. This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 746 and the Excellence Initiative of the German Federal and State Governments (EXC 294 BIOSS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin van der Laan or Nikolaus Pfanner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Laan, M., Schrempp, S. & Pfanner, N. Voltage-coupled conformational dynamics of mitochondrial protein-import channel. Nat Struct Mol Biol 20, 915–917 (2013). https://doi.org/10.1038/nsmb.2643

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2643

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing