Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a kinesin–tubulin complex and implications for kinesin motility

Abstract

The typical function of kinesins is to transport cargo along microtubules. Binding of ATP to microtubule-attached motile kinesins leads to cargo displacement. To better understand the nature of the conformational changes that lead to the power stroke that moves a kinesin's load along a microtubule, we determined the X-ray structure of human kinesin-1 bound to αβ-tubulin. The structure defines the mechanism of microtubule-stimulated ATP hydrolysis, which releases the kinesin motor domain from microtubules. It also reveals the structural linkages that connect the ATP nucleotide to the kinesin neck linker, a 15–amino acid segment C terminal to the catalytic core of the motor domain, to result in the power stroke. ATP binding to the microtubule-bound kinesin favors neck-linker docking. This biases the attachment of kinesin's second head in the direction of the movement, thus initiating each of the steps taken.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the tubulin–kinesin complex.
Figure 2: The adjustment of the proteins of the tubulin–kinesin complex in the cryo-EM envelope of kinesin-1–decorated microtubules.
Figure 3: Conformational changes in tubulin-bound kinesin–ATP.
Figure 4: The kinesin-1 and Eg5 ATP-binding sites superpose well.
Figure 5: Neck-linker docking in tubulin-bound kinesin–ADP–AlF4.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  2. Wordeman, L. How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin. Cell Dev. Biol. 21, 260–268 (2010).

    Article  CAS  Google Scholar 

  3. Lawrence, C.J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22 (2004).

    Article  CAS  Google Scholar 

  4. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, 2001).

  5. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  6. Marx, A., Hoenger, A. & Mandelkow, E. Structures of kinesin motor proteins. Cell Motil. Cytoskeleton 66, 958–966 (2009).

    Article  CAS  Google Scholar 

  7. Hirose, K., Akimaru, E., Akiba, T., Endow, S.A. & Amos, L.A. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol. Cell 23, 913–923 (2006).

    Article  CAS  Google Scholar 

  8. Kikkawa, M. & Hirokawa, N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187–4194 (2006).

    Article  CAS  Google Scholar 

  9. Sindelar, C.V. & Downing, K.H. An atomic-level mechanism for activation of the kinesin molecular motors. Proc. Natl. Acad. Sci. USA 107, 4111–4116 (2010).

    Article  CAS  Google Scholar 

  10. Ma, Y.Z. & Taylor, E.W. Kinetic mechanism of a monomeric kinesin construct. J. Biol. Chem. 272, 717–723 (1997).

    Article  CAS  Google Scholar 

  11. Sindelar, C.V. et al. Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy. Nat. Struct. Biol. 9, 844–848 (2002).

    CAS  PubMed  Google Scholar 

  12. Vale, R.D. & Fletterick, R.J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997).

    Article  CAS  Google Scholar 

  13. Yang, J.T., Saxton, W.M., Stewart, R.J., Raff, E.C. & Goldstein, L.S. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science 249, 42–47 (1990).

    Article  CAS  Google Scholar 

  14. Alonso, M.C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007).

    Article  CAS  Google Scholar 

  15. Amos, L.A. & Hirose, K. The structure of microtubule–motor complexes. Curr. Opin. Cell Biol. 9, 4–11 (1997).

    Article  CAS  Google Scholar 

  16. Mignot, I. et al. Design and characterization of modular scaffolds for tubulin assembly. J. Biol. Chem. 287, 31085–31094 (2012).

    Article  CAS  Google Scholar 

  17. Pecqueur, L. et al. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proc. Natl. Acad. Sci. USA 109, 12011–12016 (2012).

    Article  CAS  Google Scholar 

  18. Nogales, E., Whittaker, M., Milligan, R.A. & Downing, K.H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  Google Scholar 

  19. Ravelli, R.B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).

    Article  CAS  Google Scholar 

  20. Sack, S., Kull, F.J. & Mandelkow, E. Motor proteins of the kinesin family: structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262, 1–11 (1999).

    Article  CAS  Google Scholar 

  21. Grant, B.J., McCammon, J.A., Caves, L.S. & Cross, R.A. Multivariate analysis of conserved sequence-structure relationships in kinesins: coupling of the active site and a tubulin-binding sub-domain. J. Mol. Biol. 368, 1231–1248 (2007).

    Article  CAS  Google Scholar 

  22. Chang, Q., Nitta, R., Inoue, S. & Hirokawa, N. Structural basis for the ATP-induced isomerization of kinesin. J. Mol. Biol. 425, 1869–1880 (2013).

    Article  CAS  Google Scholar 

  23. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  24. Parke, C.L., Wojcik, E.J., Kim, S. & Worthylake, D.K. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J. Biol. Chem. 285, 5859–5867 (2010).

    Article  CAS  Google Scholar 

  25. Sack, S. et al. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155–16165 (1997).

    Article  CAS  Google Scholar 

  26. Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J. & Vale, R.D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  Google Scholar 

  27. Leipe, D.D., Wolf, Y.I., Koonin, E.V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  Google Scholar 

  28. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  29. Cederquist, G.Y. et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum. Mol. Genet. 21, 5484–5499 (2012).

    Article  CAS  Google Scholar 

  30. Tischfield, M.A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).

    Article  CAS  Google Scholar 

  31. Cross, R.A. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309 (2004).

    Article  CAS  Google Scholar 

  32. Hackney, D.D. Kinesin ATPase: rate-limiting ADP release. Proc. Natl. Acad. Sci. USA 85, 6314–6318 (1988).

    Article  CAS  Google Scholar 

  33. Coureux, P.D. et al. A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003).

    Article  CAS  Google Scholar 

  34. Reubold, T.F., Eschenburg, S., Becker, A., Kull, F.J. & Manstein, D.J. A structural model for actin-induced nucleotide release in myosin. Nat. Struct. Biol. 10, 826–830 (2003).

    Article  CAS  Google Scholar 

  35. Löwe, J., Li, H., Downing, K.H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  Google Scholar 

  36. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  37. Castoldi, M. & Popov, A.V. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003).

    Article  CAS  Google Scholar 

  38. Binz, H.K. et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582 (2004).

    Article  CAS  Google Scholar 

  39. Wong, Y.L. & Rice, S.E. Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail. Proc. Natl. Acad. Sci. USA 107, 11781–11786 (2010).

    Article  CAS  Google Scholar 

  40. Wang, W. et al. Kif2C minimal functional domain has unusual nucleotide binding properties that are adapted to microtubule depolymerization. J. Biol. Chem. 287, 15143–15153 (2012).

    Article  CAS  Google Scholar 

  41. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  42. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  43. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  Google Scholar 

  44. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  45. Nawrotek, A., Knossow, M. & Gigant, B. The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J. Mol. Biol. 412, 35–42 (2011).

    Article  CAS  Google Scholar 

  46. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  47. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Skehel and L. Amos for comments on the manuscript. We thank I. Mignot for assistance and D. Mauchand (Unité Commune d'Expérimentation Animale, Institut National de la Recherche Agronomique, Jouy en Josas, France) for providing us with the material from which tubulin was purified. We also thank R. Vale (University of California, San Francisco, San Francisco, California, USA) for giving us the kinesin plasmid. Diffraction data were collected at the European Synchrotron Research Facility (ID29) and at SOLEIL synchrotron (PX1). We thank the machine and beamline groups for making these experiments possible. This work has also benefited from the facilities and expertise of IMAGIF (Centre de Recherche de Gif). We gratefully acknowledge support by the French Fondation pour la Recherche Médicale (DEQ20081213979 to M.K.), Fondation ARC pour la Recherche sur le Cancer (to B.G.) and Agence Nationale de la Recherche (grants ANR-09-BLAN-0071 and ANR-12-BSV8-0002-01 to B.G.) and the Chinese Ministry of Education (grant NCET-10-0604 to C.W.) and Science and Technology Commission of Shanghai Municipality (grant 11JC1413100 to C.W.).

Author information

Authors and Affiliations

Authors

Contributions

B.G., C.W. and M.K. designed research; B.G. crystallized the tubulin–DARPin–kinesin complex and determined its structure; W.W. and Q.J. characterized the kinesin-tubulin interaction biochemically; L.P., B.D. and A.P. provided the DARPin; B.G., C.W. and M.K. analyzed the data; B.G., C.W. and M.K. wrote the manuscript with input from all other authors.

Corresponding authors

Correspondence to Chunguang Wang or Marcel Knossow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1922 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gigant, B., Wang, W., Dreier, B. et al. Structure of a kinesin–tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 20, 1001–1007 (2013). https://doi.org/10.1038/nsmb.2624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing