Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells

Abstract

The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs undergoing premature termination of translation. It has been argued that in human cells, NMD is restricted to a pioneer round of translation initiated on mRNAs associated with the cap-binding complex (CBC) and that the exchange of the CBC for the eIF4F translation initiation complex renders mRNAs immune to NMD. Here, we demonstrate that human mRNAs undergoing eIF4F-dependent translation are not immune to NMD. First, prolonged translation inhibition does not render an NMD substrate resistant to NMD, despite allowing exchange of CBC for eIF4F. Second, eIF4F inhibitors stabilize NMD substrates undergoing cap-dependent translation. Third, the eIF4E-associated pool of an NMD substrate degrades as rapidly as the overall pool of the mRNA. Thus, eIF4F-dependent translation supports NMD in human cells, allowing for the possibility that NMD could be activated upon cellular cues on already translating mRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β39 mRNA remains competent for NMD after release from prolonged translation inhibition by cycloheximide or puromycin.
Figure 2: The degradation of β39 mRNA after release from puromycin-mediated translation inhibition is sensitive to 4EGI-1.
Figure 3: The eIF4F inhibitors 4EGI-1 and 4E-BP1 stabilize β39 mRNA but not β39 mRNA translated from an internal ribosome entry site.
Figure 4: 4EGI-1 and 4E-BP1 stabilize GPx1-46 and βWT-SMG5 NMD substrates.
Figure 5: The eIF4E-associated pool of β39 mRNA diminishes at the same rate as the overall β39 mRNA pool.
Figure 6: NMD can occur on mRNAs undergoing eIF4F-initiated translation in human cells.

Similar content being viewed by others

References

  1. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, Y.F., Imam, J.S. & Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Mühlemann, O., Eberle, A.B., Stalder, L. & Zamudio Orozco, R. Recognition and elimination of nonsense mRNA. Biochim. Biophys. Acta 1779, 538–549 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. He, F. et al. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell 12, 1439–1452 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F. & Dietz, H.C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073–1078 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rehwinkel, J., Letunic, I., Raes, J., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11, 1530–1544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kervestin, S. & Jacobson, A. NMD: a multifaceted response to premature translational termination. Nat. Rev. Mol. Cell Biol. 13, 700–712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nicholson, P. et al. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol. Life Sci. 67, 677–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Rebbapragada, I. & Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21, 394–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Le Hir, H., Moore, M.J. & Maquat, L.E. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Saulière, J. et al. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19, 1124–1131 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J. 26, 1591–1601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eberle, A.B., Stalder, L., Mathys, H., Orozco, R.Z. & Muhlemann, O. Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol. 6, e92 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ivanov, P.V., Gehring, N.H., Kunz, J.B., Hentze, M.W. & Kulozik, A.E. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736–747 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva, A.L., Ribeiro, P., Inacio, A., Liebhaber, S.A. & Romao, L. Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA 14, 563–576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, G., Rebbapragada, I. & Lykke-Andersen, J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6, e111 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y. & Ohno, S. Human SMG-1, a novel phosphatidylinositol-3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho, H., Kim, K.M. & Kim, Y.K. Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol. Cell 33, 75–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Eberle, A.B., Lykke-Andersen, S., Muhlemann, O. & Jensen, T.H. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. 16, 49–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Huntzinger, E., Kashima, I., Fauser, M., Sauliere, J. & Izaurralde, E. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14, 2609–2617 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Unterholzner, L. & Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Franks, T.M., Singh, G. & Lykke-Andersen, J. Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay. Cell 143, 938–950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiu, S.Y., Serin, G., Ohara, O. & Maquat, L.E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77–87 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Görlich, D. et al. Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32 (1996).

    Article  PubMed  Google Scholar 

  33. Sato, H. & Maquat, L.E. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin-β. Genes Dev. 23, 2537–2550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sonenberg, N. & Dever, T.E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13, 56–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Fortes, P. et al. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol. Cell 6, 191–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, K.M. et al. A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation. Genes Dev. 23, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hosoda, N., Kim, Y.K., Lejeune, F. & Maquat, L.E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 12, 893–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lejeune, F., Ranganathan, A.C. & Maquat, L.E. eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol. 11, 992–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Dzikiewicz-Krawczyk, A., Piontek, P., Szweykowska-Kulinska, Z. & Jarmolowski, A. The nuclear cap-binding protein complex is not essential for nonsense-mediated mRNA decay (NMD) in plants. Acta Biochim. Pol. 55, 825–828 (2008).

    CAS  PubMed  Google Scholar 

  41. Gao, Q., Das, B., Sherman, F. & Maquat, L.E. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl. Acad. Sci. USA 102, 4258–4263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuperwasser, N., Brogna, S., Dower, K. & Rosbash, M. Nonsense-mediated decay does not occur within the yeast nucleus. RNA 10, 1907–1915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keeling, K.M. et al. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10, 691–703 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maderazo, A.B., Belk, J.P., He, F. & Jacobson, A. Nonsense-containing mRNAs that accumulate in the absence of a functional nonsense-mediated mRNA decay pathway are destabilized rapidly upon its restitution. Mol. Cell Biol. 23, 842–851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maquat, L.E., Hwang, J., Sato, H. & Tang, Y. CBP80-promoted mRNP rearrangements during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. Cold Spring Harb. Symp. Quant. Biol. 75, 127–134 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Pestka, S. Inhibitors of ribosome functions. Annu. Rev. Microbiol. 25, 487–562 (1971).

    Article  CAS  PubMed  Google Scholar 

  47. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Moerke, N.J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Holbrook, J.A., Neu-Yilik, G., Gehring, N.H., Kulozik, A.E. & Hentze, M.W. Internal ribosome entry sequence-mediated translation initiation triggers nonsense-mediated decay. EMBO Rep. 7, 722–726 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Woeller, C.F., Gaspari, M., Isken, O. & Maquat, L.E. NMD resulting from encephalomyocarditis virus IRES-directed translation initiation seems to be restricted to CBP80/20-bound mRNA. EMBO Rep. 9, 446–451 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gingras, A.C., Raught, B. & Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Gingras, A.C. et al. Regulation of 4E–BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422–1437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moriarty, P.M., Reddy, C.C. & Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell Biol. 18, 2932–2939 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hogg, J.R. & Goff, S.P. Upf1 senses 3′ UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gehring, N.H., Lamprinaki, S., Kulozik, A.E. & Hentze, M.W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Huang, L. et al. RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol. Cell 43, 950–961 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yepiskoposyan, H., Aeschimann, F., Nilsson, D., Okoniewski, M. & Muhlemann, O. Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17, 2108–2118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giorgi, C. et al. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130, 179–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Duke, G.M., Hoffman, M.A. & Palmenberg, A.C. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J. Virol. 66, 1602–1609 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Sarnow (Stanford University; pGL3-FLuc-IRES-Rluc), G. Wagner (Harvard Medical School; 4EGI-1) and E. Izaurralde (Max Planck Institute for Developmental Biology; antibody to CBP80) for valuable reagents. We thank R. Lardelli for critical comments on the manuscript and members of J.L.-A.'s laboratory for helpful discussions. This work was supported by a grant from the US National Science Foundation (MCB-0946464) to J.L.-A. and a postdoctoral fellowship from the Fondation pour la Recherche Médicale en France to S.D.

Author information

Authors and Affiliations

Authors

Contributions

S.D. and J.L.-A. conceived of and designed the study. S.D. performed the experiments. Both authors analyzed the data and wrote the paper.

Corresponding author

Correspondence to Jens Lykke-Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 6633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, S., Lykke-Andersen, J. Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells. Nat Struct Mol Biol 20, 702–709 (2013). https://doi.org/10.1038/nsmb.2575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing