Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for monomeric actin function in INO80 chromatin remodeling

Abstract

Actin has well-established functions in the cytoplasm, but its roles in the nucleus remain poorly defined. Here, by studying the nuclear actin-containing yeast INO80 chromatin remodeling complex, we provide genetic and biochemical evidence for a role of monomeric actin in INO80 chromatin remodeling. We demonstrate that, in contrast to cytoplasmic actin, nuclear actin is present as a monomer in the INO80 complex, and its barbed end is not accessible for polymerization. We identify an actin mutation in subdomain 2 affecting in vivo nuclear functions and reducing the chromatin remodeling activity of the INO80 complex in vitro. Notably, the highly conserved subdomain 2 at the pointed end of actin contributes to the interaction of INO80 with chromatin. Our results establish an evolutionarily conserved function of nuclear actin in its monomeric form and suggest that nuclear actin can utilize a fundamentally distinct mechanism from that of cytoplasmic actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the actin subunit in the INO80 complex.
Figure 2: Actin contributes to INO80 chromatin remodeling.
Figure 3: Actin in the INO80 complex exists in a unique microenvironment.
Figure 4: Actin subdomain 2 is crucial for INO80 complex interaction with chromatin.
Figure 5: A model for nuclear actin in the INO80 complex.

Similar content being viewed by others

References

  1. Bettinger, B.T., Gilbert, D.M. & Amberg, D.C. Actin up in the nucleus. Nat. Rev. Mol. Cell Biol. 5, 410–415 (2004).

    Article  CAS  Google Scholar 

  2. Blessing, C.A., Ugrinova, G.T. & Goodson, H.V. Actin and ARPs: action in the nucleus. Trends Cell Biol. 14, 435–442 (2004).

    Article  CAS  Google Scholar 

  3. Olave, I.A., Reck-Peterson, S.L. & Crabtree, G.R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002).

    Article  CAS  Google Scholar 

  4. Shumaker, D.K., Kuczmarski, E.R. & Goldman, R.D. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr. Opin. Cell Biol. 15, 358–366 (2003).

    Article  CAS  Google Scholar 

  5. Clark, T.G. & Merriam, R.W. Diffusible and bound actin nuclei of Xenopus laevis oocytes. Cell 12, 883–891 (1977).

    Article  CAS  Google Scholar 

  6. Gonsior, S.M. et al. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 112, 797–809 (1999).

    CAS  PubMed  Google Scholar 

  7. Wada, A., Fukuda, M., Mishima, M. & Nishida, E. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J. 17, 1635–1641 (1998).

    Article  CAS  Google Scholar 

  8. Galarneau, L. et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927–937 (2000).

    Article  CAS  Google Scholar 

  9. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  Google Scholar 

  10. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  11. Papoulas, O. et al. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development 125, 3955–3966 (1998).

    CAS  PubMed  Google Scholar 

  12. Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000).

    Article  CAS  Google Scholar 

  13. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  Google Scholar 

  14. Egly, J.M., Miyamoto, N.G., Moncollin, V. & Chambon, P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 3, 2363–2371 (1984).

    Article  CAS  Google Scholar 

  15. Hofmann, W.A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6, 1094–1101 (2004).

    Article  CAS  Google Scholar 

  16. Hu, P., Wu, S. & Hernandez, N. A role for β-actin in RNA polymerase III transcription. Genes Dev. 18, 3010–3015 (2004).

    Article  CAS  Google Scholar 

  17. Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6475–6480 (2003).

    Article  CAS  Google Scholar 

  18. Philimonenko, V.V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165–1172 (2004).

    Article  CAS  Google Scholar 

  19. Miralles, F., Posern, G., Zaromytidou, A.I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  Google Scholar 

  20. Rando, O.J., Zhao, K., Janmey, P. & Crabtree, G.R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA 99, 2824–2829 (2002).

    Article  CAS  Google Scholar 

  21. Szerlong, H. et al. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat. Struct. Mol. Biol. 15, 469–476 (2008).

    Article  CAS  Google Scholar 

  22. Ebbert, R., Birkmann, A. & Schuller, H.J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32, 741–751 (1999).

    Article  CAS  Google Scholar 

  23. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R. & O'Shea, E.K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    Article  CAS  Google Scholar 

  24. Shortle, D., Novick, P. & Botstein, D. Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin gene. Proc. Natl. Acad. Sci. USA 81, 4889–4893 (1984).

    Article  CAS  Google Scholar 

  25. Wertman, K.F., Drubin, D.G. & Botstein, D. Systematic mutational analysis of the yeast ACT1 gene. Genetics 132, 337–350 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Novick, P. & Botstein, D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40, 405–416 (1985).

    Article  CAS  Google Scholar 

  27. Udugama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell Biol. 31, 662–673 (2011).

    Article  CAS  Google Scholar 

  28. Winkler, D.D., Luger, K. & Hieb, A.R. Quantifying chromatin-associated interactions: the hi-fi system. Methods Enzymol. 512, 243–274 (2012).

    Article  CAS  Google Scholar 

  29. Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  CAS  Google Scholar 

  30. Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147–155 (2003).

    Article  CAS  Google Scholar 

  31. Bugyi, B. & Carlier, M.F. Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449–470 (2010).

    Article  CAS  Google Scholar 

  32. Pollard, T.D. & Cooper, J.A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  Google Scholar 

  33. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990).

    Article  CAS  Google Scholar 

  34. Schutt, C.E., Myslik, J.C., Rozycki, M.D., Goonesekere, N.C. & Lindberg, U. The structure of crystalline profilin–β-actin. Nature 365, 810–816 (1993).

    Article  CAS  Google Scholar 

  35. Schwyter, D.H., Kron, S.J., Toyoshima, Y.Y., Spudich, J.A. & Reisler, E. Subtilisin cleavage of actin inhibits in vitro sliding movement of actin filaments over myosin. J. Cell Biol. 111, 465–470 (1990).

    Article  CAS  Google Scholar 

  36. Kapoor, P. et al. Leishmania actin binds and nicks kDNA as well as inhibits decatenation activity of type II topoisomerase. Nucleic Acids Res. 38, 3308–3317 (2010).

    Article  CAS  Google Scholar 

  37. Szerlong, H., Saha, A. & Cairns, B.R. The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22, 3175–3187 (2003).

    Article  CAS  Google Scholar 

  38. Schafer, D.A. & Schroer, T.A. Actin-related proteins. Annu. Rev. Cell Dev. Biol. 15, 341–363 (1999).

    Article  CAS  Google Scholar 

  39. Harata, M. et al. The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones. Mol. Biol. Cell 10, 2595–2605 (1999).

    Article  CAS  Google Scholar 

  40. Goley, E.D. & Welch, M.D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    Article  CAS  Google Scholar 

  41. Shen, X. Preparation and analysis of the INO80 complex. Methods Enzymol. 377, 401–412 (2003).

    Article  Google Scholar 

  42. Winkler, D.D., Muthurajan, U.M., Hieb, A.R. & Luger, K. Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. J. Biol. Chem. 286, 41883–41892 (2011).

    Article  CAS  Google Scholar 

  43. Clarke, A.S., Lowell, J.E., Jacobson, S.J. & Pillus, L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell Biol. 19, 2515–2526 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Wu (National Cancer Institute), in whose laboratory we initiated early studies on actin; D. Drubin (University of California, Berkeley) for providing a collection of actin mutants; C. Boone (University of Toronto) for sharing genetic data on actin; and J. Highland, T. Wehr and J. Xiao for technical assistance. Funding to P.K. is provided by the Odyssey postdoctoral program and the Theodore N. Law Endowment for Scientific Achievement at The University of Texas MD Anderson Cancer Center. X.S. is supported by funds and grants from the US National Cancer Institute (K22CA100017), the US National Institute of General Medical Sciences (R01GM093104) and the Center for Cancer Epigenetics at MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

P.K., M.C. and X.S. designed the experiments. P.K. and M.C. conducted the experiments. D.D.W. and K.L. provided purified nucleosomes and performed the quantitative fluorescent nucleosome binding assays. P.K., M.C. and X.S. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Xuetong Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table and Supplementary Note (PDF 2306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, P., Chen, M., Winkler, D. et al. Evidence for monomeric actin function in INO80 chromatin remodeling. Nat Struct Mol Biol 20, 426–432 (2013). https://doi.org/10.1038/nsmb.2529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing