Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

Abstract

DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling, we used biotinylated trimethylpsoralen as a DNA structure probe to show that the human genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF insulator protein–binding sites. Underwound domains are transcriptionally active and enriched in topoisomerase I, 'open' chromatin fibers and DNase I sites, but they are depleted of topoisomerase II. Furthermore, DNA supercoiling affects additional levels of chromatin compaction as underwound domains are cytologically decondensed, topologically constrained and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation, providing an evolutionary purpose for clustering genes along chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution mapping of DNA supercoiling.
Figure 2: Organization and boundaries of supercoiling domains.
Figure 3: Transcription- and topoisomerase-dependent remodeling of DNA supercoiling.
Figure 4: RNA polymerase and topoisomerases define supercoiling domains.
Figure 5: DNA supercoiling around TSSs and regulatory elements.
Figure 6: Underwound domains are cytologically decondensed and torsionally constrained.
Figure 7: Transcription and topoisomerase dependence of large-scale chromatin structures.
Figure 8: Relationship among transcription, DNA supercoiling and large-scale chromatin structures.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Sinden, R.R., Carlson, J.O. & Pettijohn, D.E. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21, 773–783 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Ljungman, M. & Hanawalt, P.C. Localized torsional tension in the DNA of human cells. Proc. Natl. Acad. Sci. USA 89, 6055–6059 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ljungman, M. & Hanawalt, P.C. Presence of negative torsional tension in the promoter region of the transcriptionally poised dihydrofolate reductase gene in vivo. Nucleic Acids Res. 23, 1782–1789 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Villeponteau, B., Lundell, M. & Martinson, H. Torsional stress promotes the DNAase I sensitivity of active genes. Cell 39, 469–478 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, L.F. & Wang, J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giaever, G.N. & Wang, J.C. Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55, 849–856 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Villeponteau, B. & Martinson, H.G. Gamma rays and bleomycin nick DNA and reverse the DNase I sensitivity of β-globin gene chromatin in vivo. Mol. Cell Biol. 7, 1917–1924 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Weintraub, H., Cheng, P.F. & Conrad, K. Expression of transfected DNA depends on DNA topology. Cell 46, 115–122 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Dunaway, M. & Ostrander, E.A. Local domains of supercoiling activate a eukaryotic promoter in vivo. Nature 361, 746–748 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Mizutani, M., Ohta, T., Watanabe, H., Handa, H. & Hirose, S. Negative supercoiling of DNA facilitates an interaction between transcription factor IID and the fibroin gene promoter. Proc. Natl. Acad. Sci. USA 88, 718–722 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schultz, M.C., Brill, S.J., Ju, Q., Sternglanz, R. & Reeder, R.H. Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev. 6, 1332–1341 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Tabuchi, H. & Hirose, S. DNA supercoiling facilitates formation of the transcription initiation complex on the fibroin gene promoter. J. Biol. Chem. 263, 15282–15287 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Mizutani, M., Ura, K. & Hirose, S. DNA superhelicity affects the formation of transcription preinitiation complex on eukaryotic genes differently. Nucleic Acids Res. 19, 2907–2911 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pedone, F., Filetici, P. & Ballario, P. Yeast RNA polymerase II transcription of circular DNA at different degrees of supercoiling. Nucleic Acids Res. 10, 5197–5208 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joshi, R.S., Pina, B. & Roca, J. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes. EMBO J. 29, 740–748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilmour, D.S., Pflugfelder, G., Wang, J.C. & Lis, J.T. Topoisomerase I interacts with transcribed regions in Drosophila cells. Cell 44, 401–407 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Stewart, A.F., Herrera, R.E. & Nordheim, A. Rapid induction of c-fos transcription reveals quantitative linkage of RNA polymerase II and DNA topoisomerase I enzyme activities. Cell 60, 141–149 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Gilmour, D.S. & Lis, J.T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell Biol. 6, 3984–3989 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Seila, A.C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bernardi, G. The human genome: organization and evolutionary history. Annu. Rev. Genet. 29, 445–476 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lercher, M.J., Urrutia, A.O. & Hurst, L.D. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat. Genet. 31, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 13, 1998–2004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Naughton, C., Sproul, D., Hamilton, C. & Gilbert, N. Analysis of active and inactive X chromosome architecture reveals the independent organisation of 30-nm and large scale chromatin structures. Mol. Cell 40, 397–409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sproul, D., Gilbert, N. & Bickmore, W.A. The role of chromatin structure in regulating the expression of clustered genes. Nat. Rev. Genet. 6, 775–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kornberg, R.D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Marsden, M.P. & Laemmli, U.K. Metaphase chromosome structure: evidence for a radial loop model. Cell 17, 849–858 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hou, C., Li, L., Qin, Z.S. & Corces, V.G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nora, E.P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belmont, A.S. & Bruce, K. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 127, 287–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Filipski, J., Leblanc, J., Youdale, T., Sikorska, M. & Walker, P.R. Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9, 1319–1327 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sachs, R.K., van den, E.G., Trask, B., Yokota, H. & Hearst, J.E. A random-walk/giant-loop model for interphase chromosomes. Proc. Natl. Acad. Sci. USA 92, 2710–2714 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cimino, G.D., Gamper, H.B., Isaacs, S.T. & Hearst, J.E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu. Rev. Biochem. 54, 1151–1193 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Tomic, M.T., Wemmer, D.E. & Kim, S.H. Structure of a psoralen cross-linked DNA in solution by nuclear magnetic resonance. Science 238, 1722–1725 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. BermĂşdez, I., Garcia-Martinez, J., Perez-Ortin, J.E. & Roca, J. A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res. 38, e182 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Merkenschlager, M. Cohesin: a global player in chromosome biology with local ties to gene regulation. Curr. Opin. Genet. Dev. 20, 555–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Chambeyron, S. & Bickmore, W.A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, Y., Kireev, I., Plutz, M., Ashourian, N. & Belmont, A.S. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J. Cell Biol. 185, 87–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hay, N., Skolnik-David, H. & Aloni, Y. Attenuation in the control of SV40 gene expression. Cell 29, 183–193 (1982).

    Article  CAS  PubMed  Google Scholar 

  44. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Blagosklonny, M.V. Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle 3, 1537–1542 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Métivier, R. et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003).

    Article  PubMed  Google Scholar 

  47. Costantini, M., Clay, O., Auletta, F. & Bernardi, G. An isochore map of human chromosomes. Genome Res. 16, 536–541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Locke, G., Tolkunov, D., Moqtaderi, Z., Struhl, K. & Morozov, A.V. High-throughput sequencing reveals a simple model of nucleosome energetics. Proc. Natl. Acad. Sci. USA (2010).

  49. Zhou, Y. et al. Genome-wide identification of chromosomal regions of increased tumor expression by transcriptome analysis. Cancer Res. 63, 5781–5784 (2003).

    CAS  PubMed  Google Scholar 

  50. Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Saffran, W.A. et al. Preparation and characterization of biotinylated psoralen. Nucleic Acids Res. 16, 7221–7231 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stock, J.K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol. 9, 1428–1435 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Naughton, C. et al. Progressive loss of estrogen receptor alpha cofactor recruitment in endocrine resistance. Mol. Endocrinol. 21, 2615–2626 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Reek for help with bioinformatic analysis, F. Rustenburg and D. Israeli for microarray hybridizations and B. Ramsahoye, J. Allan, W. Bickmore, J. Caceres and N. Hastie for helpful discussions. This work was funded by the Wellcome Trust 078219/Z/05/Z (N.G.) and Breakthrough Breast Cancer (N.G.). N.G. is a recipient of a UK Medical Research Council senior fellowship (MR/J00913X/1).

Author information

Authors and Affiliations

Authors

Contributions

C.N., S.L.C., M.B., B.Y. and N.G. conceived, designed and interpreted experiments. C.N., S.C. and N.G. did biological experiments. N.A., I.K.M. and N.G. carried out chemical synthesis, and P.P.E. did microarray experiments. J.G.P., S.C. and N.G. did all bioinformatic analysis. N.G. supervised the project and all authors wrote the manuscript.

Corresponding author

Correspondence to Nick Gilbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Note (PDF 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naughton, C., Avlonitis, N., Corless, S. et al. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20, 387–395 (2013). https://doi.org/10.1038/nsmb.2509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing