Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state

Abstract

G protein–coupled receptors (GPCRs) mediate transmembrane signaling. Before ligand binding, GPCRs exist in a basal state. Crystal structures of several GPCRs bound with antagonists or agonists have been solved. However, the crystal structure of the ligand-free basal state of a GPCR, the starting point of GPCR activation and function, had not yet been determined. Here we report the X-ray crystal structure of the ligand-free basal state of a GPCR in a lipid membrane–like environment. Oligomeric turkey β1-adrenergic receptors display two dimer interfaces. One interface involves the transmembrane domain (TM) 1, TM2, the C-terminal H8 and extracellular loop 1. The other interface engages residues from TM4, TM5, intracellular loop 2 and extracellular loop 2. Structural comparisons show that this ligand-free state is in an inactive conformation. This provides the structural basis of GPCR dimerization and oligomerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the ligand-free basal-state β1-AR.
Figure 2: Dimer interface 1 of β1-AR oligomers.
Figure 3: Dimer interface 2 of β1-AR oligomers.
Figure 4: The ligand-free basal state of β1-AR in an inactive conformation and with a contracted ligand-binding pocket.
Figure 5: Docking of Gs onto the β1-AR dimer.
Figure 6: Comparison of the β1-AR oligomer with the μ-opioid receptor oligomer.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  Google Scholar 

  2. Oldham, W.M. & Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    Article  CAS  Google Scholar 

  3. Vassart, G. & Costagliola, S. G protein-coupled receptors: mutations and endocrine diseases. Nat. Rev. Endocrinol. 7, 362–372 (2011).

    Article  CAS  Google Scholar 

  4. Kenakin, T. & Miller, L.J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304 (2010).

    Article  CAS  Google Scholar 

  5. Lappano, R. & Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 10, 47–60 (2011).

    Article  CAS  Google Scholar 

  6. Brunton, L. Goodman & Gilman's The Pharmacological Basis of Therapeutics 12th edn (McGraw-Hill Professional, 2010).

  7. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  8. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  9. Rasmussen, S.G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  Google Scholar 

  10. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    Article  CAS  Google Scholar 

  11. Jaakola, V.P. et al. The 2.6 Å crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  CAS  Google Scholar 

  12. Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W. & Ernst, O.P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008).

    Article  CAS  Google Scholar 

  13. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008).

    Article  CAS  Google Scholar 

  14. Murakami, M. & Kouyama, T. Crystal structure of squid rhodopsin. Nature 453, 363–367 (2008).

    Article  CAS  Google Scholar 

  15. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010).

    Article  CAS  Google Scholar 

  16. Chien, E.Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    Article  CAS  Google Scholar 

  17. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  Google Scholar 

  18. Warne, T. et al. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature 469, 241–244 (2011).

    Article  CAS  Google Scholar 

  19. Shimamura, T. et al. Structure of the human histamine H(1) receptor complex with doxepin. Nature 475, 65–70 (2011).

    Article  CAS  Google Scholar 

  20. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    Article  CAS  Google Scholar 

  21. Lebon, G. et al. Agonist-bound adenosine A(2A) receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    Article  CAS  Google Scholar 

  22. Choe, H.W. et al. Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011).

    Article  CAS  Google Scholar 

  23. Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011).

    Article  CAS  Google Scholar 

  24. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  Google Scholar 

  25. Sakmar, T.P. Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. Curr. Opin. Cell Biol. 14, 189–195 (2002).

    Article  CAS  Google Scholar 

  26. Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002).

    Article  CAS  Google Scholar 

  27. Filizola, M. & Weinstein, H. The study of G-protein coupled receptor oligomerization with computational modeling and bioinformatics. FEBS J. 272, 2926–2938 (2005).

    Article  CAS  Google Scholar 

  28. Milligan, G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr. Opin. Pharmacol. 10, 23–29 (2010).

    Article  CAS  Google Scholar 

  29. Palczewski, K. Oligomeric forms of G protein-coupled receptors (GPCRs). Trends Biochem. Sci. 35, 595–600 (2010).

    Article  CAS  Google Scholar 

  30. Klco, J.M., Lassere, T.B. & Baranski, T.J. C5a receptor oligomerization. I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor. J. Biol. Chem. 278, 35345–35353 (2003).

    Article  CAS  Google Scholar 

  31. Guo, W. et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27, 2293–2304 (2008).

    Article  CAS  Google Scholar 

  32. Liang, Y. et al. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278, 21655–21662 (2003).

    Article  CAS  Google Scholar 

  33. Kota, P., Reeves, P.J., Rajbhandary, U.L. & Khorana, H.G. Opsin is present as dimers in COS1 cells: identification of amino acids at the dimeric interface. Proc. Natl. Acad. Sci. USA 103, 3054–3059 (2006).

    Article  CAS  Google Scholar 

  34. Han, Y., Moreira, I.S., Urizar, E., Weinstein, H. & Javitch, J.A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol. 5, 688–695 (2009).

    Article  CAS  Google Scholar 

  35. Bouvier, M. Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2, 274–286 (2001).

    Article  CAS  Google Scholar 

  36. Lohse, M.J. Dimerization in GPCR mobility and signaling. Curr. Opin. Pharmacol. 10, 53–58 (2010).

    Article  CAS  Google Scholar 

  37. Mercier, J.F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  CAS  Google Scholar 

  38. Kobayashi, H., Ogawa, K., Yao, R., Lichtarge, O. & Bouvier, M. Functional rescue of β-adrenoceptor dimerization and trafficking by pharmacological chaperones. Traffic 10, 1019–1033 (2009).

    Article  CAS  Google Scholar 

  39. Guo, W., Shi, L. & Javitch, J.A. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J. Biol. Chem. 278, 4385–4388 (2003).

    Article  CAS  Google Scholar 

  40. Guo, W., Shi, L., Filizola, M., Weinstein, H. & Javitch, J.A. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc. Natl. Acad. Sci. USA 102, 17495–17500 (2005).

    Article  CAS  Google Scholar 

  41. Mancia, F., Assur, Z., Herman, A.G., Siegel, R. & Hendrickson, W.A. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO Rep. 9, 363–369 (2008).

    Article  CAS  Google Scholar 

  42. Ballesteros, J.A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    Article  CAS  Google Scholar 

  43. Moukhametzianov, R. et al. Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 108, 8228–8232 (2011).

    Article  CAS  Google Scholar 

  44. Baker, J.G., Proudman, R.G. & Tate, C.G. The pharmacological effects of the thermostabilising (m23) mutations and intra and extracellular (β36) deletions essential for crystallisation of the turkey β-adrenoceptor. Naunyn Schmiedebergs Arch. Pharmacol. 384, 71–91 (2011).

    Article  CAS  Google Scholar 

  45. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. USA 103, 16123–16128 (2006).

    Article  CAS  Google Scholar 

  46. Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012).

    Article  CAS  Google Scholar 

  47. Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    Article  CAS  Google Scholar 

  48. Smith, N.J. & Milligan, G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol. Rev. 62, 701–725 (2010).

    Article  CAS  Google Scholar 

  49. Hebert, T.E. et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 (1996).

    Article  CAS  Google Scholar 

  50. Fung, J.J. et al. Ligand-regulated oligomerization of β(2)-adrenoceptors in a model lipid bilayer. EMBO J. 28, 3315–3328 (2009).

    Article  CAS  Google Scholar 

  51. Damian, M., Martin, A., Mesnier, D., Pin, J.P. & Baneres, J.L. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J. 25, 5693–5702 (2006).

    Article  CAS  Google Scholar 

  52. Parker, E.M. & Ross, E.M. Truncation of the extended carboxyl-terminal domain increases the expression and regulatory activity of the avian β-adrenergic receptor. J. Biol. Chem. 266, 9987–9996 (1991).

    CAS  PubMed  Google Scholar 

  53. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  Google Scholar 

  54. Sun, Y. et al. Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO J. 26, 53–64 (2007).

    Article  Google Scholar 

  55. Henis, Y.I., Hekman, M., Elson, E.L. & Helmreich, E.J. Lateral motion of β receptors in membranes of cultured liver cells. Proc. Natl. Acad. Sci. USA 79, 2907–2911 (1982).

    Article  CAS  Google Scholar 

  56. Caron, M.G., Srinivasan, Y., Pitha, J., Kociolek, K. & Lefkowitz, R.J. Affinity chromatography of the β-adrenergic receptor. J. Biol. Chem. 254, 2923–2927 (1979).

    CAS  PubMed  Google Scholar 

  57. Warne, T., Chirnside, J. & Schertler, G.F. Expression and purification of truncated, non-glycosylated turkey β-adrenergic receptors for crystallization. Biochim. Biophys. Acta 1610, 133–140 (2003).

    Article  CAS  Google Scholar 

  58. Modest, V.E. & Butterworth, J.F. 4th. Effect of pH and lidocaine on β-adrenergic receptor binding. Interaction during resuscitation? Chest 108, 1373–1379 (1995).

    Article  CAS  Google Scholar 

  59. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  60. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  61. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  62. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  63. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  64. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  65. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  Google Scholar 

  66. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Andersen, O. Boudker, J. McCoy, C. Steegborn, Y. Sun, G. Verdon and W. Xu for advice, discussions and help. We thank E. Ross (University of Texas Southwestern Medical Center, Dallas, Texas, USA) for the turkey β1-AR plasmid, E. Gouaux (Vollum Institute, Portland, Oregon, USA) and O. Boudker (Weill Cornell Medical College, New York, New York, USA) for the pCGFP-EU plasmid and Cornell's chemistry core facility for the synthesis of alprenolol-NH2. We thank I. Kourinov at the Advanced Photon Source beamline 24-ID-E and J. Jakoncic at the Brookhaven National Laboratory NSLS beamlines X6A and X25 for their assistance with X-ray data collection. We are grateful to O. Boudker, H. Weinstein and members of our laboratory for critically reading the manuscript. This work was supported by US National Institutes of Health grant HL 91525 (X.-Y.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.H. performed the protein purification, set up crystallization trials, grew crystals for data collection and participated in data collection. S.C. processed the diffraction data, and solved and refined the structures. J.J.Z. participated in project strategy and manuscript preparation. X.-Y.H. was responsible for the overall project strategy and management and participated in data collection and wrote the manuscript.

Corresponding author

Correspondence to Xin-Yun Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Note (PDF 10528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Chen, S., Zhang, J. et al. Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20, 419–425 (2013). https://doi.org/10.1038/nsmb.2504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing