Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO

Abstract

Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in several eukaryotic nucleic acid metabolism pathways, including RNA interference and tRNA processing. In RNA interference in humans and Drosophila, C3PO activates the RNA-induced silencing complex (RISC) by removing the passenger strand of the small interfering RNA precursor duplex, using nuclease activity present in Trax. How C3POs engage with nucleic acid substrates is unknown. Here we identify a single protein from Archaeoglobus fulgidus that assembles into an octamer highly similar to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single 13-base-pair RNA duplex inside a large inner cavity. Trax-like-subunit catalytic sites target opposite strands of the duplex for cleavage separated by 7 base pairs. The structure provides insight into the mechanism of RNA recognition and cleavage by an archaeal C3PO-like complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of AfC3PO–duplex RNA structure.
Figure 2: AfC3PO Trax-like-subunit catalytic sites.
Figure 3: AfC3PO–duplex RNA interactions.
Figure 4: The four tetrameric inner surfaces of the AfC3PO cavity.
Figure 5: Conformational differences between AfC3PO Trax-like and Translin-like subunits.
Figure 6: AfC3PO duplex-RNA cleavage assays.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    CAS  PubMed  Google Scholar 

  3. Czech, B. & Hannon, G.J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2011).

    CAS  PubMed  Google Scholar 

  4. Kawamata, T. & Tomari, Y. Making RISC. Trends Biochem. Sci. 35, 368–376 (2010).

    CAS  PubMed  Google Scholar 

  5. Nykänen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    PubMed  Google Scholar 

  6. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004).

    CAS  PubMed  Google Scholar 

  7. Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W. & Sontheimer, E.J.A. Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004).

    CAS  PubMed  Google Scholar 

  8. Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol. 16, 953–960 (2009).

    CAS  PubMed  Google Scholar 

  9. Yoda, M. et al. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 17, 17–23 (2010).

    CAS  PubMed  Google Scholar 

  10. Iwasaki, S. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39, 292–299 (2010).

    CAS  PubMed  Google Scholar 

  11. Miyoshi, T., Takeuchi, A., Siomi, H. & Siomi, M.C. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat. Struct. Mol. Biol. 17, 1024–1026 (2010).

    CAS  PubMed  Google Scholar 

  12. Johnston, M., Geoffroy, M.C., Sobala, A., Hay, R. & Hutvagner, G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol. Biol. Cell 21, 1462–1469 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    CAS  PubMed  Google Scholar 

  14. Lee, Y.S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    CAS  PubMed  Google Scholar 

  15. Liu, X., Jiang, F., Kalidas, S., Smith, D. & Liu, Q. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12, 1514–1520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325, 750–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye, X. et al. Structure of C3PO and mechanism of human RISC activation. Nat. Struct. Mol. Biol. 18, 650–657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  19. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  20. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M.C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    CAS  PubMed  Google Scholar 

  22. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    CAS  PubMed  Google Scholar 

  23. Leuschner, P.J., Ameres, S.L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaendling, A. & McFarlane, R.J. Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem. J. 429, 225–234 (2010).

    CAS  PubMed  Google Scholar 

  29. Li, L. et al. The translin-TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nat. Struct. Mol. Biol. 19, 824–830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian, Y. et al. Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat. Struct. Mol. Biol. 18, 658–664 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pascal, J.M., Hart, P.J., Hecht, N.B. & Robertus, J.D. Crystal structure of TB-RBP, a novel RNA-binding and regulating protein. J. Mol. Biol. 319, 1049–1057 (2002).

    CAS  PubMed  Google Scholar 

  32. Sugiura, I. et al. Structure of human translin at 2.2 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 60, 674–679 (2004).

    PubMed  Google Scholar 

  33. Chennathukuzhi, V. et al. Mice deficient for testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. Mol. Cell. Biol. 23, 6419–6434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, S. et al. Translin-associated factor X is post-transcriptionally regulated by its partner protein TB-RBP, and both are essential for normal cell proliferation. J. Biol. Chem. 279, 12605–12614 (2004).

    CAS  PubMed  Google Scholar 

  35. Gupta, G.D. et al. Co-expressed recombinant human Translin-Trax complex binds DNA. FEBS Lett. 579, 3141–3146 (2005).

    CAS  PubMed  Google Scholar 

  36. Claussen, M., Koch, R., Jin, Z.Y. & Suter, B. Functional characterization of Drosophila Translin and Trax. Genetics 174, 1337–1347 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaendling, A., Ramayah, S., Pryce, D.W. & McFarlane, R.J. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. Biochim. Biophys. Acta 1783, 203–213 (2008).

    CAS  PubMed  Google Scholar 

  38. Aoki, K., Suzuki, K., Ishida, R. & Kasai, M. The DNA binding activity of Translin is mediated by a basic region in the ring-shaped structure conserved in evolution. FEBS Lett. 443, 363–366 (1999).

    CAS  PubMed  Google Scholar 

  39. Chennathukuzhi, V.M., Kurihara, Y., Bray, J.D. & Hecht, N.B. Trax (translin-associated factor X), a primarily cytoplasmic protein, inhibits the binding of TB-RBP (translin) to RNA. J. Biol. Chem. 276, 13256–13263 (2001).

    CAS  PubMed  Google Scholar 

  40. Eliahoo, E. et al. Mapping of interaction sites of the Schizosaccharomyces pombe protein Translin with nucleic acids and proteins: a combined molecular genetics and bioinformatics study. Nucleic Acids Res. 38, 2975–2989 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gupta, G.D. & Kumar, V. Identification of nucleic acid binding sites on translin-associated factor X (TRAX) protein. PLoS ONE 7, e33035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heidenreich, O., Pieken, W. & Eckstein, F. Chemically modified RNA: approaches and applications. FASEB J. 7, 90–96 (1993).

    CAS  PubMed  Google Scholar 

  43. Parker, J.S., Roe, S.M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    CAS  Google Scholar 

  45. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Evans, P.R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Collaborative Computational Project. N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. Blessing, R.H. & Smith, G.D. Difference structure-factor normalization for heavy-atom or anomalous-scattering substructure determinations. J. Appl. Crystallogr. 32, 664–670 (1999).

    CAS  Google Scholar 

  49. Weeks, C.M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Crystallogr. 32, 120–124 (1999).

    CAS  Google Scholar 

  50. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  51. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bond, C.S. & Schuttelkopf, A.W. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr. D Biol. Crystallogr. 65, 510–512 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank staff at Diamond Light Source, UK for help with data collection. This work was funded by a UK Medical Research Council Career Development Award to J.S.P. (grant no. G0600097). The pTwo-E vector was a gift from A. Oliver, University of Sussex, Brighton, UK.

Author information

Authors and Affiliations

Authors

Contributions

E.A.P. produced and purified the proteins, grew the crystals and performed the biochemical assays. E.D.L. provided advice, maintained facilities and assisted with X-ray data collection. J.S.P. collected X-ray data, determined the structures and wrote the manuscript.

Corresponding author

Correspondence to James S Parker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parizotto, E., Lowe, E. & Parker, J. Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO. Nat Struct Mol Biol 20, 380–386 (2013). https://doi.org/10.1038/nsmb.2487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2487

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology