Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4

Abstract

Measles virus is a major public health concern worldwide. Three measles virus cell receptors have been identified so far, and the structures of the first two in complex with measles virus hemagglutinin (MV-H) have been reported. Nectin-4 is the most recently identified receptor in epithelial cells, and its binding mode to MV-H remains elusive. In this study, we solved the structure of the membrane-distal domain of human nectin-4 in complex with MV-H. The structure shows that nectin-4 binds the MV-H β4-β5 groove exclusively via its N-terminal IgV domain; the contact interface is dominated by hydrophobic interactions. The binding site in MV-H for nectin-4 also overlaps extensively with those of the other two receptors. Finally, a hydrophobic pocket centered in the β4-β5 groove is involved in binding to all three identified measles virus receptors, representing a potential target for antiviral drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nectin-4 binds to the β4-β5 groove of MV-H via its N-terminal IgV domain.
Figure 2: Dimeric organization of the MV-H–nectin-4v complex.
Figure 3: Binding interface between MV-H (green) and nectin-4v (purple).
Figure 4: Comparison of MV-H binding to its three receptors.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Mankertz, A. et al. Molecular genotyping and epidemiology of measles virus transmission in the World Health Organization European Region, 2007–2009. J. Infect. Dis. 204 (suppl. 1), S335–S342 (2011).

    Article  Google Scholar 

  2. Rota, P.A., Featherstone, D.A. & Bellini, W.J. Molecular epidemiology of measles virus. Curr. Top. Microbiol. Immunol. 330, 129–150 (2009).

    CAS  PubMed  Google Scholar 

  3. Anonymous. Increased transmission and outbreaks of measles, European Region, 2011. Wkly. Epidemiol. Rec. 86, 559–564 (2011).

  4. Griggin, D.E. Measles virus. in Fields Virology (Fields, B.N. et al.) 1551–1585 (Lippincott, Williams & Wilkins, Philadelphia, 2007).

  5. Reuter, D. & Schneider-Schaulies, J. Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med. Microbiol. Immunol. (Berl.) 199, 261–271 (2010).

    Article  CAS  Google Scholar 

  6. Noyce, R.S. et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 7, e1002240 (2011).

    Article  CAS  Google Scholar 

  7. Dörig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  Google Scholar 

  8. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).

    Article  CAS  Google Scholar 

  10. Mühlebach, M.D. et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480, 530–533 (2011).

    Article  Google Scholar 

  11. Yanagi, Y., Takeda, M., Ohno, S. & Hashiguchi, T. Measles virus receptors. Curr. Top. Microbiol. Immunol. 329, 13–30 (2009).

    CAS  PubMed  Google Scholar 

  12. Dhiman, N., Jacobson, R.M. & Poland, G.A. Measles virus receptors: SLAM and CD46. Rev. Med. Virol. 14, 217–229 (2004).

    Article  CAS  Google Scholar 

  13. Liszewski, M.K., Post, T.W. & Atkinson, J.P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu. Rev. Immunol. 9, 431–455 (1991).

    Article  CAS  Google Scholar 

  14. Schwartzberg, P.L., Mueller, K.L., Qi, H. & Cannons, J.L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat. Rev. Immunol. 9, 39–46 (2009).

    Article  CAS  Google Scholar 

  15. Reymond, N. et al. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem. 276, 43205–43215 (2001).

    Article  CAS  Google Scholar 

  16. Brancati, F. et al. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am. J. Hum. Genet. 87, 265–273 (2010).

    Article  CAS  Google Scholar 

  17. Colf, L.A., Juo, Z.S. & Garcia, K.C. Structure of the measles virus hemagglutinin. Nat. Struct. Mol. Biol. 14, 1227–1228 (2007).

    Article  CAS  Google Scholar 

  18. Hashiguchi, T. et al. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc. Natl. Acad. Sci. USA 104, 19535–19540 (2007).

    Article  CAS  Google Scholar 

  19. Santiago, C., Celma, M.L., Stehle, T. & Casasnovas, J.M. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat. Struct. Mol. Biol. 17, 124–129 (2010).

    Article  CAS  Google Scholar 

  20. Hashiguchi, T. et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 18, 135–141 (2011).

    Article  CAS  Google Scholar 

  21. Tahara, M. et al. Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J. Virol. 82, 4630–4637 (2008).

    Article  CAS  Google Scholar 

  22. Leonard, V.H. et al. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Invest. 118, 2448–2458 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Massé, N. et al. Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J. Virol. 78, 9051–9063 (2004).

    Article  Google Scholar 

  24. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J. Virol. 78, 302–313 (2004).

    Article  CAS  Google Scholar 

  25. Takai, Y., Miyoshi, J., Ikeda, W. & Ogita, H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat. Rev. Mol. Cell Biol. 9, 603–615 (2008).

    Article  CAS  Google Scholar 

  26. Takai, Y. & Nakanishi, H. Nectin and afadin: novel organizers of intercellular junctions. J. Cell Sci. 116, 17–27 (2003).

    Article  CAS  Google Scholar 

  27. Ogita, H. & Takai, Y. Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58, 334–343 (2006).

    Article  CAS  Google Scholar 

  28. Takai, Y., Ikeda, W., Ogita, H. & Rikitake, Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu. Rev. Cell Dev. Biol. 24, 309–342 (2008).

    Article  CAS  Google Scholar 

  29. Hu, A., Cattaneo, R., Schwartz, S. & Norrby, E. Role of N-linked oligosaccharide chains in the processing and antigenicity of measles virus hemagglutinin protein. J. Gen. Virol. 75, 1043–1052 (1994).

    Article  CAS  Google Scholar 

  30. Chothia, C. & Jones, E.Y. The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66, 823–862 (1997).

    Article  CAS  Google Scholar 

  31. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  32. Spear, P.G., Eisenberg, R.J. & Cohen, G.H. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275, 1–8 (2000).

    Article  CAS  Google Scholar 

  33. Mendelsohn, C.L., Wimmer, E. & Racaniello, V.R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56, 855–865 (1989).

    Article  CAS  Google Scholar 

  34. Zhang, N. et al. Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat. Commun. 2, 577 (2011).

    Article  Google Scholar 

  35. Xu, X., Zhang, X., Lu, G. & Cai, Y. Purification, crystallization and preliminary X-ray analysis of the first IgV domain of human nectin-4. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. F68, 942–945 (2012).

    Article  Google Scholar 

  36. Zhang, W. et al. Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. Protein Cell 1, 459–467 (2010).

    Article  CAS  Google Scholar 

  37. Lu, G. et al. hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell 2, 64–73 (2011).

    Article  CAS  Google Scholar 

  38. Liu, J. et al. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J. Immunol. 188, 5511–5520 (2012).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  40. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  Google Scholar 

  41. Collaborative Computing Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  44. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  45. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 Project of the China Ministry of Science and Technology (MOST, grants 2011CB504703 and 2010CB911902, G.F.G.). We acknowledge assistance by the staff at the Shanghai Synchrotron Radiation Facility of China. We thank Y. Zhang, X. Yu and T. Zhao for their expert technical assistance. G.F.G. is a leading principal investigator of the Innovative Research Group of the National Natural Science Foundation of China (grant 81021003).

Author information

Authors and Affiliations

Authors

Contributions

G.F.G. conceived, designed and supervised the project. X.Z., G.L., X.X., Y.L., Y.H., J.S. and C.W.-H.Z. did the experiments. J.Q. collected the data and solved the structure. G.L., J.Y. and G.F.G. analyzed the data and wrote the paper.

Corresponding author

Correspondence to George F Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lu, G., Qi, J. et al. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat Struct Mol Biol 20, 67–72 (2013). https://doi.org/10.1038/nsmb.2432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing