Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of repair of 5′-topoisomerase II–DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2

Abstract

The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5′-phosphotyrosyl–linked topo IIDNA adducts. Here, X-ray structures of mouse Tdp2–DNA complexes reveal that Tdp2 β–2-helix–β DNA damage–binding 'grasp', helical 'cap' and DNA lesion–binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5′-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single–metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tdp2 catalytic activity.
Figure 2: Structures of the mTdp2cat–DNA complexes.
Figure 3: Tdp2 DNA-recognition motifs.
Figure 4: Structure-based mutagenesis analysis of Tdp2 DNA-interaction elements and active site residues.
Figure 5: Tdp2 active site and catalytic mechanism.
Figure 6: Determinants of Tdp2 substrate specificity.
Figure 7: DNA-damage recognition by EEP domains.
Figure 8: Model for removal of 5′-phosphotyrosine–linked topo II adducts from DNA by Tdp2.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Deweese, J.E. & Osheroff, N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res. 37, 738–748 (2009).

    Article  CAS  Google Scholar 

  2. Wilstermann, A.M. & Osheroff, N. Base excision repair intermediates as topoisomerase II poisons. J. Biol. Chem. 276, 46290–46296 (2001).

    Article  CAS  Google Scholar 

  3. Bandele, O.J. & Osheroff, N. (-)-Epigallocatechin gallate, a major constituent of green tea, poisons human type II topoisomerases. Chem. Res. Toxicol. 21, 936–943 (2008).

    Article  CAS  Google Scholar 

  4. Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337 (2009).

    Article  CAS  Google Scholar 

  5. Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009).

    Article  CAS  Google Scholar 

  6. Hande, K.R. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34, 1514–1521 (1998).

    Article  CAS  Google Scholar 

  7. Baldwin, E.L. & Osheroff, N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents 5, 363–372 (2005).

    Article  CAS  Google Scholar 

  8. Cortes Ledesma, F., El Khamisy, S.F., Zuma, M.C., Osborn, K. & Caldecott, K.W. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461, 674–678 (2009).

    Article  Google Scholar 

  9. Bahmed, K., Nitiss, K.C. & Nitiss, J.L. UnTTrapping the ends: a new player in overcoming protein linked DNA damage. Cell Res. 20, 122–123 (2010).

    Article  Google Scholar 

  10. Mao, Y., Desai, S.D., Ting, C.Y., Hwang, J. & Liu, L.F. 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J. Biol. Chem. 276, 40652–40658 (2001).

    Article  CAS  Google Scholar 

  11. Fan, J.R. et al. Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses. DNA Repair (Amst.) 7, 452–463 (2008).

    Article  Google Scholar 

  12. Do, P.M. et al. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 26, 830–845 (2012).

    Article  CAS  Google Scholar 

  13. Zeng, Z., Cortes-Ledesma, F., El Khamisy, S.F. & Caldecott, K.W. TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J. Biol. Chem. 286, 403–409 (2011).

    Article  CAS  Google Scholar 

  14. Wang, H. et al. Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity. EMBO J. 29, 2566–2576 (2010).

    Article  CAS  Google Scholar 

  15. Mol, C.D., Izumi, T., Mitra, S. & Tainer, J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 403, 451–456 (2000).

    Article  CAS  Google Scholar 

  16. Pype, S. et al. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation. J. Biol. Chem. 275, 18586–18593 (2000).

    Article  CAS  Google Scholar 

  17. Várady, G., Sarkadi, B. & Fatyol, K. TTRAP is a novel component of the non-canonical TRAF6–TAK1 TGF-β signaling pathway. PLoS ONE 6, e25548 (2011).

    Article  Google Scholar 

  18. Garces, F., Pearl, L.H. & Oliver, A.W. The structural basis for substrate recognition by Mammalian polynucleotide kinase 3′ phosphatase. Mol. Cell 44, 385–396 (2011).

    Article  CAS  Google Scholar 

  19. Schellenberg, M.J. & Williams, R.S. DNA end processing by polynucleotide kinase/phosphatase. Proc. Natl. Acad. Sci. USA 108, 20855–20856 (2011).

    Article  CAS  Google Scholar 

  20. Bernstein, N.K. et al. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol. Cell 17, 657–670 (2005).

    Article  CAS  Google Scholar 

  21. Coquelle, N., Havali-Shahriari, Z., Bernstein, N., Green, R. & Glover, J.N. Structural basis for the phosphatase activity of polynucleotide kinase/phosphatase on single- and double-stranded DNA substrates. Proc. Natl. Acad. Sci. USA 108, 21022–21027 (2011).

    Article  CAS  Google Scholar 

  22. Tumbale, P. et al. Structure of an aprataxin-DNA complex with insights into AOA1 neurodegenerative disease. Nat. Struct. Mol. Biol. 18, 1189–1195 (2011).

    Article  CAS  Google Scholar 

  23. Tsutakawa, S.E. et al. Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell 145, 198–211 (2011).

    Article  CAS  Google Scholar 

  24. Wu, C.C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459–462 (2011).

    Article  CAS  Google Scholar 

  25. Schmidt, B.H., Burgin, A.B., Deweese, J.E., Osheroff, N. & Berger, J.M. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 465, 641–644 (2010).

    Article  CAS  Google Scholar 

  26. Hartsuiker, E., Neale, M.J. & Carr, A.M. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol. Cell 33, 117–123 (2009).

    Article  CAS  Google Scholar 

  27. Nakamura, K. et al. Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLoS Genet. 6, e1000828 (2010).

    Article  Google Scholar 

  28. Neale, M.J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).

    Article  CAS  Google Scholar 

  29. Williams, R.S., Williams, J.S. & Tainer, J.A. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem. Cell Biol. 85, 509–520 (2007).

    Article  CAS  Google Scholar 

  30. Davies, D.R., Interthal, H., Champoux, J.J. & Hol, W.G. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure 10, 237–248 (2002).

    Article  CAS  Google Scholar 

  31. El-Khamisy, S.F. et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434, 108–113 (2005).

    Article  CAS  Google Scholar 

  32. Takashima, H. et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet. 32, 267–272 (2002).

    Article  CAS  Google Scholar 

  33. Zeng, Z. et al. TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Res. 40, 8371–8380 (2012).

    Article  CAS  Google Scholar 

  34. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  Google Scholar 

  35. Stols, L. et al. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr. Purif. 25, 8–15 (2002).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. in Methods in Enzymology Vol. 276 (eds. Carter, C.W. Jr. & Sweets, R.M.) 307–326 Academic Press, 1997.

    Article  Google Scholar 

  37. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  38. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  39. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  40. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the intramural research program of the US National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS) grant 1Z01ES102765-02 (R.S.W.) and by NIH grant CA 084442 (D.A.R.). We thank T. Kunkel and members of the Williams lab for discussions and critical reading of the manuscript, L. Pedersen of the NIEHS Collaborative crystallography group, the Advanced Light Source beamline 12.3.1 (SIBYLS) staff and the Advanced Photon Source (APS) Southeast Regional Collaborative Access Team (SER-CAT) staff for assistance with SAXS and crystallographic data collection and J. Williams of the NIEHS Protein Microcharacterization Core Facility for mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Contributions

M.J.S., C.D.A., P.D.R. and S.A. characterized the Tdp2 protein and enzymatic activity. C.D.A. and M.J.S. performed mutagenesis and analyzed mutant Tdp2 proteins. M.J.S. crystallized Tdp2 and Tdp2–DNA complexes. M.J.S. and R.S.W. collected SAXS and X-ray diffraction data and solved the X-ray crystal structures. M.J.S. and D.A.R. designed experiments, analyzed results and helped prepare the manuscript. R.S.W. conceived of and managed the study, designed experiments, analyzed results and wrote the manuscript.

Corresponding author

Correspondence to R Scott Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–4 (PDF 7575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellenberg, M., Appel, C., Adhikari, S. et al. Mechanism of repair of 5′-topoisomerase II–DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2. Nat Struct Mol Biol 19, 1363–1371 (2012). https://doi.org/10.1038/nsmb.2418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2418

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer