Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal microtubule binding by the Ndc80 kinetochore complex

Abstract

The Ndc80 complex is a key site of kinetochore-microtubule attachment during cell division. The human complex engages microtubules with a globular 'head' formed by tandem calponin-homology domains and an 80-amino-acid unstructured 'tail' that contains sites of phosphoregulation by the Aurora B kinase. Using biochemical, cell biological and electron microscopy analyses, we dissected the roles of the tail in binding of microtubules and mediation of cooperative interactions between Ndc80 complexes. Two segments of the tail that contain Aurora B phosphorylation sites become ordered at interfaces; one with tubulin and the second with an adjacent Ndc80 head on the microtubule surface, forming interactions that are disrupted by phosphorylation. We propose a model in which Ndc80's interaction with either growing or shrinking microtubule ends can be tuned by the phosphorylation state of its tail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ndc80 tail interacts with both the Ndc80 complex head and tubulin.
Figure 2: Aurora B phosphorylation zones regulate Ndc80 complex–Ndc80 complex and Ndc80 complex–tubulin interactions.
Figure 3: Zone 2 of Aurora B phosphorylation sites negatively regulates Ndc80 complex clustering.
Figure 4: Both Aurora B phosphorylation zones regulate kinetochore–microtubule interactions in vivo.
Figure 5: Structural analysis of the Ndc80 complex–microtubule interface.
Figure 6: Models of Ndc80 complex interacting with dynamic microtubule ends.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Wigge, P.A. & Kilmartin, J.V. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152, 349–360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeLuca, J.G., Moree, B., Hickey, J.M., Kilmartin, J.V. & Salmon, E.D. hNUF2 inhibition blocks stable kinetochore–microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol. 159, 549–555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCleland, M.L. et al. The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore–microtubule attachment. Curr. Biol. 14, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. DeLuca, J.G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by HEC1. Cell 127, 969–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Lluesma, S., Stucke, V.M. & Nigg, E.A. Role of HEC1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. DeLuca, J.G. et al. Nuf2 and HEC1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13, 2103–2109 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. McCleland, M.L. et al. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17, 101–114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, Y., Riley, D.J., Chen, P.L. & Lee, W.H. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol. Cell Biol. 17, 6049–6056 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ciferri, C. et al. Architecture of the human ndc80–hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088–29095 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Wei, R.R., Sorger, P.K. & Harrison, S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl. Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, H.W. et al. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 383, 894–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maure, J.F. et al. The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr. Biol. 21, 207–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei, R.R. et al. Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14, 1003–1009 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Petrovic, A. et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J. Cell Biol. 190, 835–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maskell, D.P., Hu, X.W. & Singleton, M.R. Molecular architecture and assembly of the yeast kinetochore MIND complex. J. Cell Biol. 190, 823–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, R.R., Al-Bassam, J. & Harrison, S.C. The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat. Struct. Mol. Biol. 14, 54–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Ciferri, C. et al. Implications for kinetochore–microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guimaraes, G.J., Dong, Y., McEwen, B.F. & Deluca, J.G. Kinetochore–microtubule attachment relies on the disordered N-terminal tail domain of HEC1. Curr. Biol. 18, 1778–1784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, S.A., Johnson, M.L. & Stukenberg, P.T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(HEC1). Curr. Biol. 18, 1785–1791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheeseman, I.M. et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka, T.U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Alushin, G.M. et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeLuca, K.F., Lens, S.M. & DeLuca, J.G. Temporal changes in HEC1 phosphorylation control kinetochore–microtubule attachment stability during mitosis. J. Cell Sci. 124, 622–634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tooley, J.G., Miller, S.A. & Stukenberg, P.T. The Ndc80 complex employs a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol. Biol. Cell 22, 1217–1226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kikkawa, M., Okada, Y. & Hirokawa, N. 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Alushin, G.M. et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edde, B. et al. Posttranslational glutamylation of alpha-tubulin. Science 247, 83–85 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Redeker, V. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol. 95, 77–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Bobinnec, Y. et al. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil. Cytoskeleton 39, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Rogowski, K. et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Sundin, L.J., Guimaraes, G.J. & Deluca, J.G. The Ndc80 complex proteins Nuf2 and HEC1 make distinct contributions to kinetochore–microtubule attachment in mitosis. Mol. Biol. Cell 22, 759–768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lawrimore, J., Bloom, K.S. & Salmon, E.D. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 195, 573–582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skibbens, R.V., Skeen, V.P. & Salmon, E.D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Amaro, A.C. et al. Molecular control of kinetochore–microtubule dynamics and chromosome oscillations. Nat. Cell Biol. 12, 319–329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powers, A.F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaitanos, T.N. et al. Stable kinetochore–microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442–1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Theis, M. et al. Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division. EMBO J. 28, 1453–1465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Welburn, J.P. et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, Y.W., Jeyaprakash, A.A., Nigg, E.A. & Santamaria, A. Aurora B controls kinetochore–microtubule attachments by inhibiting Ska complex–KMN network interaction. J. Cell Biol. 196, 563–571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, G. et al. The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores. J. Cell Sci. 125, 3243–3253 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Aslanidis, C. & de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suloway, C. et al. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Wilson-Kubalek, E.M., Cheeseman, I.M., Yoshioka, C., Desai, A. & Milligan, R.A. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182, 1055–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  48. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Sorzano, C.O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Ogura, T., Iwasaki, K. & Sato, C. Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. J. Struct. Biol. 143, 185–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Ramey, V.H., Wang, H.W. & Nogales, E. Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries. J. Struct. Biol. 167, 97–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Egelman, E.H. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hohn, M. et al. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Lowe, J., Li, H., Downing, K.H. & Nogales, E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge G. Lander for assistance with image processing. GST tail expression constructs were generated by members of the QB3 Macrolab at University of California Berkeley. We thank T. Houweling, P. Grob and G. Kemalyan for computer and electron microscopy support. G.M.A. is partially supported by a US National Institutes of Health training grant. This work was funded by grants from the US National Institutes of Health (GM051487 to E.N. and GM081576 to P.T.S.). E.N. is also funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

G.M.A. and E.N. designed research. G.M.A. and V.M. purified proteins and performed microtubule-binding assays. G.M.A. carried out electron microscopy experiments and image processing. D.M. and J.T. performed cell biology experiments and generated new constructs. G.M.A. and E.N. wrote the paper. G.M.A, V.M., D.M., J.T., P.T.S. and E.N. contributed to data analysis and editing of the manuscript.

Corresponding author

Correspondence to Eva Nogales.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 (PDF 16158 kb)

Supplementary Video 1

Cryo-EM structure of the Ndc80–microtubule interface, which supplements Figure 5a. Crystal structures of two bonsai Δ1–80 molecules (PDB 2VE7) and tubulin (PDB 1JFF) docked into the improved cryo-EM density map, colored as in Figure 5a. Two densities not occupied by the crystal structures (magenta) were interpreted as corresponding to ordered regions of the N-terminal tail. (MOV 18038 kb)

Supplementary Video 2

Visualizing the Ndc80–E hook interface, which supplements Figure 5c. Same as Supplementary Movie 1, but with the cryo-EM map displayed at a lower threshold, where the tubulin E hooks (red) are visible. (MOV 8715 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alushin, G., Musinipally, V., Matson, D. et al. Multimodal microtubule binding by the Ndc80 kinetochore complex. Nat Struct Mol Biol 19, 1161–1167 (2012). https://doi.org/10.1038/nsmb.2411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing