Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DICER- and AGO3-dependent generation of retinoic acid–induced DR2 Alu RNAs regulates human stem cell proliferation

This article has been updated

Abstract

Although liganded nuclear receptors have been established to regulate RNA polymerase II (Pol II)-dependent transcription units, their role in regulating Pol III–transcribed DNA repeats remains largely unknown. Here we report that ~2–3% of the ~100,000–200,000 total human DR2 Alu repeats located in proximity to activated Pol II transcription units are activated by the retinoic acid receptor (RAR) in human embryonic stem cells to generate Pol III–dependent RNAs. These transcripts are processed, initially in a DICER-dependent fashion, into small RNAs (~28–65 nt) referred to as repeat-induced RNAs that cause the degradation of a subset of crucial stem-cell mRNAs, including Nanog mRNA, which modulate exit from the proliferative stem-cell state. This regulation requires AGO3-dependent accumulation of processed DR2 Alu transcripts and the subsequent recruitment of AGO3-associated decapping complexes to the target mRNA. In this way, the RAR-dependent and Pol III–dependent DR2 Alu transcriptional events in stem cells functionally complement the Pol II–dependent neuronal transcriptional program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: atRA induction of DR2 Alu transcription.
Figure 2: DR2 Alu transcripts associate with AGO3 and produce riRNAs in a DICER-dependent manner.
Figure 3: riRNAs recognize complementary sequences in the 3′ UTRs of target mRNAs.
Figure 4: Role of the riRNA complementary sequence in post-transcriptional regulation.
Figure 5: Role of the AGO3-associated decapping complex in post-transcriptional regulation.
Figure 6: DR2 Alu transcripts and riRNAs regulate stem-cell proliferation.
Figure 7: Working model for atRA-induced Pol II and Pol III transcription programs in stem cells resulting in the generation of DR2 Alu–derived riRNAs that act on a subset of mRNAs containing complementary sequences and exert developmental effects.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 31 January 2013

    In the version of this article initially published, an accession number for the ChIP-seq, RNA-seq and small RNA–seq data was missing. H3K36me3 ChIP-seq, RNA-seq and small RNA–seq data are now available with GEO accession number GSE42602. This information has now been included in the HTML and PDF versions of the article.

References

  1. Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  3. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hörlein, A.J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  PubMed  Google Scholar 

  5. Chen, J.D. & Evans, R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Perissi, V., Aggarwal, A., Glass, C.K., Rose, D.W. & Rosenfeld, M.G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116, 511–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Orgel, L.E. & Crick, F.H. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Cordaux, R. & Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Häsler, J. & Strub, K. Alu elements as regulators of gene expression. Nucleic Acids Res. 34, 5491–5497 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, W.M., Maraia, R.J., Rubin, C.M. & Schmid, C.W. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 22, 1087–1095 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Polak, P. & Domany, E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 7, 133 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Laperriere, D., Wang, T.T., White, J.H. & Mader, S. Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution. BMC Genomics 8, 23 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Umylny, B., Presting, G. & Ward, W.S. Evidence of Alu and B1 expression in dbEST. Arch. Androl. 53, 207–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Pleasure, S.J. & Lee, V.M. NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res. 35, 585–602 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Grover, D., Mukerji, M., Bhatnagar, P., Kannan, K. & Brahmachari, S.K. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20, 813–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Steinberg, T.H., Mathews, D.E., Durbin, R.D. & Burgess, R.R. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J. Biol. Chem. 265, 499–505 (1990).

    CAS  PubMed  Google Scholar 

  19. Oler, A.J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 17, 620–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moqtaderi, Z. et al. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat. Struct. Mol. Biol. 17, 635–640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mariner, P.D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Balagopal, V. & Parker, R. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 21, 403–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sai Lakshmi, S. & Agrawal, S. piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 36, D173–D177 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Thomson, T. & Lin, H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol. 25, 355–376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park, J.E. et al. Dicer recognizes the 59 end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Azuma-Mukai, A. et al. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc. Natl. Acad. Sci. USA 105, 7964–7969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heyse, G., Jönsson, F., Chang, W.J. & Lipps, H.J. RNA-dependent control of gene amplification. Proc. Natl. Acad. Sci. USA 107, 22134–22139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diederichs, S. & Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Bhattacharya, B. et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, H. et al. VentX, a novel lymphoid-enhancing factor/T-cell factor-associated transcription repressor, is a putative tumor suppressor. Cancer Res. 70, 202–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Vecchione, A. et al. Fez1/Lzts1 absence impairs Cdk1/Cdc25C interaction during mitosis and predisposes mice to cancer development. Cancer Cell 11, 275–289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neef, R., Kuske, M.A., Pröls, E. & Johnson, J.P. Identification of the human PHLDA1/TDAG51 gene: down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res. 62, 5920–5929 (2002).

    CAS  PubMed  Google Scholar 

  38. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tritschler, F. et al. DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa. Proc. Natl. Acad. Sci. USA 106, 21591–21596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, Y.H. et al. Growth inhibition of a human myeloma cell line by all-trans retinoic acid is not mediated through downregulation of interleukin-6 receptors but through upregulation of p21(WAF1). Blood 94, 251–259 (1999).

    CAS  PubMed  Google Scholar 

  42. Yu, Z. et al. p21 is required for atRA-mediated growth inhibition of MEPM cells, which involves RAR. J. Cell. Biochem. 104, 2185–2192 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Gu, T.J., Yi, X., Zhao, X.W., Zhao, Y. & Yin, J.Q. Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 10, 563 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, H. & Wong, W.H. SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24, 2395–2396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, H. & Wong, W.H. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 25, 1026–1032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).

    Article  PubMed  Google Scholar 

  48. Saeed, A.I. et al. TM4 microarray software suite. Methods Enzymol. 411, 134–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Portales-Casamar, E. et al. PAZAR: a framework for collection and dissemination of cis-regulatory sequence annotation. Genome Biol. 8, R207 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hertz, G.Z. & Stormo, G.D. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15, 563–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, J., Huda, A., Lunyak, V.V. & Jordan, I.K. A Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags. Bioinformatics 26, 2501–2508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, J.H., Shao, P., Zhou, H., Chen, Y.Q. & Qu, L.H. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 38, D123–D130 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Levy, A., Sela, N. & Ast, G. TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res. 36, D47–D52 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Homer, N., Merriman, B. & Nelson, S.F. BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4, e7767 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garcia-Bassets, I. et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Mercola (Sanford Burnham Medical Research Institute, La Jolla, California) and S. Ding (The Scripps Research Institute, La Jolla, California) for providing H9 human embryonic stem cells; N. Kim (Seoul National University, Gwanak-gu, Seoul, South Korea) for DICER expression constructs; J. Nand for assistance with the RNA-Seq data analysis; C. Nelson for cell culture assistance; J. Hightower for assistance with figure and manuscript preparation; and M. Ghassemian from the University of California San Diego (UCSD) Biomolecular/Proteomics Mass Spectrometry Facility for assistance in mass spectrometry. We thank A. Pasquinelli at UCSD for invaluable discussions and comments. We also acknowledge the UCSD Cancer Center Specialized Support Grant P30 CA23100 for confocal microscopy. Q.H. is a Cancer Research Institute postdoctoral fellow. M.G.R. is an investigator with the Howard Hughes Medical Institute. This work was supported by grants from the US National Institutes of Health (DK018477, DK39949, HL065445, NS034934) and the National Cancer Institute (CA097134) to M.G.R. and awards from the US Department of Defense and the Prostate Cancer Foundation to M.G.R.

Author information

Authors and Affiliations

Authors

Contributions

Q.H. performed the majority of the experiments. B.T. contributed the bioinformatics analysis and made the initial finding that the 3′ UTRs of specific stem-cell mRNAs harbored sequences complementary to DR2 Alu-derived riRNAs. M.T. contributed part of the northern blot data. W.L. contributed GRO-Seq. J.Z. provided sequencing and microinjection assistance. K.A.O. provided sequencing and vector construction assistance. D.W.R. contributed microinjection. C.K.G. helped design experiments and critically read the manuscript. M.G.R. designed the experiments and evaluated the data. Q.H. and M.G.R. wrote the manuscript.

Corresponding author

Correspondence to Michael G Rosenfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–4 (PDF 3626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Tanasa, B., Trabucchi, M. et al. DICER- and AGO3-dependent generation of retinoic acid–induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol 19, 1168–1175 (2012). https://doi.org/10.1038/nsmb.2400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing