Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness

Abstract

Both epigenetic and splicing regulation contribute to tumor progression, but the potential links between these two levels of gene-expression regulation in pathogenesis are not well understood. Here, we report that the mouse and human RNA helicases Ddx17 and Ddx5 contribute to tumor-cell invasiveness by regulating alternative splicing of several DNA- and chromatin-binding factors, including the macroH2A1 histone. We show that macroH2A1 splicing isoforms differentially regulate the transcription of a set of genes involved in redox metabolism. In particular, the SOD3 gene that encodes the extracellular superoxide dismutase and plays a part in cell migration is regulated in an opposite manner by macroH2A1 splicing isoforms. These findings reveal a new regulatory pathway in which splicing factors control the expression of histone variant isoforms that in turn drive a transcription program to switch tumor cells to an invasive phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ddx5 and Ddx17 RNA helicases contribute to cell migration and invasion.
Figure 2: The Ddx5 and Ddx17 RNA helicases control alternative splicing of DNA- and chromatin-binding factors.
Figure 3: Alternative splicing of the macroH2A1 histone variant is involved in tumor progression.
Figure 4: Alternative splicing of the macroH2A1 histone variant contributes to the Ddx5-Ddx17 effect on cell migration and invasion.
Figure 5: Regulation of mH2A1 splicing isoforms by Ddx5 and Ddx17 affects regulation of genes involved in redox metabolism.
Figure 6: Ddx5 and Ddx17–regulated SOD3 expression is involved in cell migration and invasion.
Figure 7: mH2A1 associates with the SOD3 gene, and its splicing variants regulate SOD3 transcription activity in an opposite manner.
Figure 8: mH2A1 alternative splicing controlled by Ddx5 and Ddx17 in MDA-MB-231 cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Füllgrabe, J., Kavanagh, E. & Joseph, B. Histone onco-modifications. Oncogene 30, 3391–3403 (2011).

    Article  PubMed  Google Scholar 

  2. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Dalvai, M. & Bystricky, K. The role of histone modifications and variants in regulating gene expression in breast cancer. J. Mammary Gland Biol. Neoplasia 15, 19–33 (2010).

    Article  PubMed  Google Scholar 

  4. Kapoor, A. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Srivastava, N., Gochhait, S., de Boer, P. & Bamezai, R.N. Role of H2AX in DNA damage response and human cancers. Mutat. Res. 681, 180–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Valdés-Mora, F. et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res. 22, 307–321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sporn, J.C. et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28, 3423–3428 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Novikov, L. et al. QKI-mediated alternative splicing of the histone variant macroH2A1 regulates cancer cell proliferation. Mol. Cell. Biol. 31, 4244–4255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venables, J.P. et al. Cancer-associated regulation of alternative splicing. Nat. Struct. Mol. Biol. 16, 670–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Dutertre, M. et al. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res. 70, 896–905 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. David, C.J. & Manley, J.L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dutertre, M., Vagner, S. & Auboeuf, D. Alternative splicing and breast cancer. RNA Biol. 7, 403–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Stamm, S. et al. Function of alternative splicing. Gene 344, 1–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Witten, J.T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aslakson, C.J. & Miller, F.R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  Google Scholar 

  17. Bemmo, A. et al. Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities. PLoS ONE 5, e11981 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fuller-Pace, F.V. & Moore, H.C. RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol. 7, 239–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Janknecht, R. Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am. J. Transl. Res 2, 223–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bates, G.J. et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 24, 543–553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Endoh, H. et al. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol. Cell. Biol. 19, 5363–5372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hönig, A., Auboeuf, D., Parker, M.M., O′Malley, B.W. & Berget, S.M. Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol. Cell Biol. 22, 5698–5707 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guil, S. et al. Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation. Mol. Cell Biol. 23, 2927–2941 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kar, A. et al. RNA Helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol. Cell. Biol. 31, 1812–1821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas, P.D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gamble, M.J., Frizzell, K.M., Yang, C., Krishnakumar, R. & Kraus, W.L. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 24, 21–32 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buschbeck, M. et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16, 1074–1079 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Timinszky, G. et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat. Struct. Mol. Biol. 16, 923–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Gamble, M.J. & Kraus, W.L. Multiple facets of the unique histone variant macroH2A: from genomics to cell biology. Cell Cycle 9, 2568–2574 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Grek, C.L. & Tew, K.D. Redox metabolism and malignancy. Curr. Opin. Pharmacol. 10, 362–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pani, G., Galeotti, T. & Chiarugi, P. Metastasis: cancer cell′s escape from oxidative stress. Cancer Metastasis Rev. 29, 351–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Chaiswing, L. & Oberley, T.D. Extracellular/microenvironmental redox state. Antioxid. Redox Signal. 13, 449–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Mori, K., Shibanuma, M. & Nose, K. Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res. 64, 7464–7472 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Teoh, M.L., Fitzgerald, M.P., Oberley, L.W. & Domann, F.E. Overexpression of extracellular superoxide dismutase attenuates heparanase expression and inhibits breast carcinoma cell growth and invasion. Cancer Res. 69, 6355–6363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Svensk, A.M., Soini, Y., Paakko, P., Hiravikoski, P. & Kinnula, V.L. Differential expression of superoxide dismutases in lung cancer. Am. J. Clin. Pathol. 122, 395–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Abdelhaleem, M. Helicases: an overview. Methods Mol. Biol. 587, 1–12 (2010).

    CAS  PubMed  Google Scholar 

  37. Yang, L., Lin, C. & Liu, Z.R. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from β-catenin. Cell 127, 139–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Germann, S. et al. Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 618, 1038–1048 (2012).

    Google Scholar 

  39. Wang, D. et al. RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol. Cell Proteomics 11, M111.011932 (2012).

    Article  PubMed  Google Scholar 

  40. Shin, S., Rossow, K.L., Grande, J.P. & Janknecht, R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 67, 7572–7578 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Mooney, S.M., Grande, J.P., Salisbury, J.L. & Janknecht, R. Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Wortham, N.C. et al. The DEAD-box protein p72 regulates ERα-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERα-positive breast cancer. Oncogene 28, 4053–4064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, L., Lin, C. & Liu, Z.R. Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol. Cancer Res. 3, 355–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Carter, C.L., Lin, C., Liu, C.Y., Yang, L. & Liu, Z.R. Phosphorylated p68 RNA helicase activates Snail1 transcription by promoting HDAC1 dissociation from the Snail1 promoter. Oncogene 29, 5427–5436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Causevic, M. et al. Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20, 7734–7743 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Jacobs, A.M. et al. SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 26, 5866–5876 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Mooney, S.M., Goel, A., D′Assoro, A.B., Salisbury, J.L. & Janknecht, R. Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J. Biol. Chem. 285, 30443–30452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sporn, J.C. & Jung, B. Differential regulation and predictive potential of MacroH2A1 isoforms in colon cancer. Am. J. Pathol. 180, 2516–2526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A.G. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 12, 624–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Krishnakumar, R. & Kraus, W.L. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell 39, 8–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Giansanti, V., Dona, F., Tillhon, M. & Scovassi, A.I. PARP inhibitors: new tools to protect from inflammation. Biochem. Pharmacol. 80, 1869–1877 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Cyr, A.R. & Domann, F.E. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid. Redox Signal. 15, 551–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Acharya, A., Das, I., Chandhok, D. & Saha, T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 3, 23–34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Weaver, A.M. Regulation of cancer invasion by reactive oxygen species and Tks family scaffold proteins. Sci. Signal. 2, pe56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Svineng, G., Ravuri, C., Rikardsen, O., Huseby, N.E. & Winberg, J.O. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect. Tissue Res. 49, 197–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Radisky, D.C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, X. et al. The atypical histone macroH2A1.2 interacts with HER-2 in cancer cells. J. Biol. Chem. 287, 23171–23183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bittencourt, D. et al. Cotranscriptional splicing potentiates the mRNA production from a subset of estradiol-stimulated genes. Mol. Cell. Biol. 28, 5811–5824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Buschbeck and V.A. Raker for critically reading the manuscript and L. Mhamdi for technical assistance. We thank C. Vanbelle and C. Boucharon from CeCILE - SFR Sante Lyon-Est for technical assistance and helpful discussion. This work was supported by the Institut National du Cancer (2008-1-PL BIO 01 to D.A. and S.V.), Agence Nationale de la Recherche (BLAN07-3_186592 to D.A. and S.V.), Association d'Aide à la Recherche Cancérologique de Saint-Cloud (to R.L.) and Fondation Recherche Médicale (Equipe FRM DEQ20110421278). S.G. was supported by Association pour la Recherche sur le Cancer; L.G. and S.P. by Agence Nationale de la Recherche; E.Z., H.M. and J.-P.V. by FRM; E.D. by Ligue Nationale Contre le Cancer; and M.P.E. by Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Contributions

E.D., S.P., M.D., R.L., S.V. and D.A. designed the experiments; S.V. and D.A. supervised the project; E.D., S.P., K.D., L.G., M.L.-T., E.Z. and S.G. conducted the experiments; M.P.E., H.M. and J.-P.V. performed all bioinformatics analysis. All authors performed the data analysis and wrote the manuscript.

Corresponding authors

Correspondence to Stéphan Vagner or Didier Auboeuf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 5 (PDF 1113 kb)

Supplementary Table 1

Genes affected at the transcriptional level by ddx5 and ddx17 depletion. (XLS 253 kb)

Supplementary Table 2

Genes affected at the exon level by ddx5 and ddx17 depletion. (XLS 1373 kb)

Supplementary Table 3

Genes affected at the transcriptional level by mH2A1.1 and mH2A1.2 depletion. (XLS 156 kb)

Supplementary Table 4

Sequences of siRNAs and primers (XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dardenne, E., Pierredon, S., Driouch, K. et al. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 19, 1139–1146 (2012). https://doi.org/10.1038/nsmb.2390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2390

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer