Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The APOBEC3C crystal structure and the interface for HIV-1 Vif binding

Abstract

The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide–like 3 (APOBEC3, referred to as A3) proteins are cellular cytidine deaminases that potently restrict retrovirus replication. However, HIV-1 viral infectivity factor (Vif) counteracts the antiviral activity of most A3 proteins by targeting them for proteasomal degradation. To date, the structure of an A3 protein containing a Vif-binding interface has not been solved. Here, we report a high-resolution crystal structure of APOBEC3C and identify the HIV-1 Vif–interaction interface. Extensive structure-guided mutagenesis revealed the role of a shallow cavity composed of hydrophobic or negatively charged residues between the α2 and α3 helices. This region is distant from the DPD motif (residues 128–130) of APOBEC3G that participates in HIV-1 Vif interaction. These findings provide insight into Vif-A3 interactions and could lead to the development of new pharmacologic anti–HIV-1 compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The X-ray crystal structure of full-length A3C.
Figure 2: Ten A3C residues critical for HIV-1 Vif interaction.
Figure 3: The A3C interface for the HIV-1 Vif interaction.
Figure 4: Analogous residues of A3F and A3DE are involved in the HIV-1 Vif-binding interface.
Figure 5: The effects of mutations at the equivalent residues in A3F on antiviral activity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Goila-Gaur, R. & Strebel, K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5, 51 (2008).

    Article  Google Scholar 

  2. LaRue, R.S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83, 494–497 (2009).

    Article  CAS  Google Scholar 

  3. Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).

    Article  CAS  Google Scholar 

  4. Jäger, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2012).

    Article  Google Scholar 

  5. Zhang, W., Du, J., Evans, S.L., Yu, Y. & Yu, X.F. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481, 376–379 (2012).

    Article  CAS  Google Scholar 

  6. Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med. 9, 1398–1403 (2003).

    Article  CAS  Google Scholar 

  7. Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).

    Article  CAS  Google Scholar 

  8. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).

    Article  CAS  Google Scholar 

  9. Russell, R.A., Smith, J., Barr, R., Bhattacharyya, D. & Pathak, V.K. Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif. J. Virol. 83, 1992–2003 (2009).

    Article  CAS  Google Scholar 

  10. Smith, J.L. & Pathak, V.K. Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. J. Virol. 84, 12599–12608 (2010).

    Article  CAS  Google Scholar 

  11. Zhen, A., Wang, T., Zhao, K., Xiong, Y. & Yu, X.F. A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity. J. Virol. 84, 1902–1911 (2010).

    Article  CAS  Google Scholar 

  12. Bogerd, H.P., Doehle, B.P., Wiegand, H.L. & Cullen, B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA 101, 3770–3774 (2004).

    Article  CAS  Google Scholar 

  13. Mangeat, B., Turelli, P., Liao, S. & Trono, D. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem. 279, 14481–14483 (2004).

    Article  CAS  Google Scholar 

  14. Schröfelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).

    Article  Google Scholar 

  15. Xu, H. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA 101, 5652–5657 (2004).

    Article  CAS  Google Scholar 

  16. Huthoff, H. & Malim, M.H. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J. Virol. 81, 3807–3815 (2007).

    Article  CAS  Google Scholar 

  17. Albin, J.S. et al. A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif. J. Biol. Chem. 285, 40785–40792 (2010).

    Article  CAS  Google Scholar 

  18. Chen, K.M. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452, 116–119 (2008).

    Article  CAS  Google Scholar 

  19. Furukawa, A. et al. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J. 28, 440–451 (2009).

    Article  CAS  Google Scholar 

  20. Holden, L.G. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456, 121–124 (2008).

    Article  CAS  Google Scholar 

  21. Shandilya, S.M. et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure 18, 28–38 (2010).

    Article  CAS  Google Scholar 

  22. Betts, L., Xiang, S., Short, S.A., Wolfenden, R. & Carter, C.W.J. Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. J. Mol. Biol. 235, 635–656 (1994).

    Article  CAS  Google Scholar 

  23. Prochnow, C., Bransteitter, R., Klein, M.G., Goodman, M.F. & Chen, X.S. The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 445, 447–451 (2007).

    Article  CAS  Google Scholar 

  24. Krzysiak, T.C., Jung, J., Thompson, J., Baker, D. & Gronenborn, A.M. APOBEC2 is a monomer in solution: implications for APOBEC3G models. Biochemistry 51, 2008–2017 (2012).

    Article  CAS  Google Scholar 

  25. Iwatani, Y. et al. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc. Natl. Acad. Sci. USA 106, 19539–19544 (2009).

    Article  CAS  Google Scholar 

  26. Russell, R.A. & Pathak, V.K. Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J. Virol. 81, 8201–8210 (2007).

    Article  CAS  Google Scholar 

  27. Larue, R.S., Lengyel, J., Jónsson, S.R., Andrésdóttir, V. & Harris, R.S. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J. Virol. 84, 8193–8201 (2010).

    Article  CAS  Google Scholar 

  28. Kitamura, S., Ode, H. & Iwatani, Y. Structural features of antiviral APOBEC3 proteins are linked to their functional activities. Front. Microbiol. 2, 258 (2011).

    Article  CAS  Google Scholar 

  29. Hultquist, J.F., Binka, M., Larue, R.S., Simon, V. & Harris, R.S. Vif proteins of human and simian immunodeficiency viruses require cellular CBFβ to degrade APOBEC3 restriction factors. J. Virol. 86, 2874–2877 (2012).

    Article  CAS  Google Scholar 

  30. He, Z., Zhang, W., Chen, G., Xu, R. & Yu, X.F. Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. J. Mol. Biol. 381, 1000–1011 (2008).

    Article  CAS  Google Scholar 

  31. Pery, E., Rajendran, K.S., Brazier, A.J. & Gabuzda, D. Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. J. Virol. 83, 2374–2381 (2009).

    Article  CAS  Google Scholar 

  32. Schröfelbauer, B., Senger, T., Manning, G. & Landau, N.R. Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J. Virol. 80, 5984–5991 (2006).

    Article  Google Scholar 

  33. Tian, C. et al. Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J. Virol. 80, 3112–3115 (2006).

    Article  CAS  Google Scholar 

  34. Stauch, B. et al. Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc. Natl. Acad. Sci. USA 106, 12079–12084 (2009).

    Article  CAS  Google Scholar 

  35. Kao, S. et al. The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J. Virol. 77, 11398–11407 (2003).

    Article  CAS  Google Scholar 

  36. Kinomoto, M. et al. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res. 35, 2955–2964 (2007).

    Article  CAS  Google Scholar 

  37. Nguyen, K.L. et al. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology 319, 163–175 (2004).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-Ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  39. Vargin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  Google Scholar 

  40. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  42. Roos, J.W., Maughan, M.F., Liao, Z., Hildreth, J.E. & Clements, J.E. LuSIV cells: a reporter cell line for the detection and quantitation of a single cycle of HIV and SIV replication. Virology 273, 307–315 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.M. Gronenborn, J.G. Levin and K. Strebel for critical discussions and reading of the manuscript. We also thank K. Tokunaga (National Institute of Infectious Diseases, Tokyo, Japan) for providing the pCAGGS APOBEC3 plasmids. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan to Y.I. (JSPS KAKENHI 24590568) and by a grant for HIV/AIDS research from the Ministry of Health, Labor and Welfare of Japan to Y.I.

Author information

Authors and Affiliations

Authors

Contributions

S.K., H.O., M.N., T.K., T.Y., N.W., A.S. and Y.I. performed experiments and analysis for the crystal structure determination; S.K., M.N., M.I., Y.N., T.K., Y.Y. and Y.I. performed biochemical experiments; S.K., M.N., M.I., Y.N., Y.Y., W.S. and Y.I. analyzed the biochemical data; Y.I. directed the project; S.K., H.O. and Y.I. wrote the manuscript with all authors' help.

Corresponding author

Correspondence to Yasumasa Iwatani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 7320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, S., Ode, H., Nakashima, M. et al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 19, 1005–1010 (2012). https://doi.org/10.1038/nsmb.2378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing