Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription

Abstract

Although the roles of 5-methylcytosine and 5-hydroxymethylcytosine in epigenetic regulation of gene expression are well established, the functional effects of 5-formylcytosine and 5-carboxylcytosine on the process of transcription are not clear. Here we report a systematic study of the effects of five different forms of cytosine in DNA on mammalian and yeast RNA polymerase II transcription, providing new insights into potential functional interplay between cytosine methylation status and transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytosine methylation status affects mammalian and yeast RNA polymerase II transcription.
Figure 2: Pol II polymerization rate and specificity of GTP incorporation for C, 5hmC, 5fC and 5caC templates.
Figure 3: 5fC reduces Pol II substrate discrimination of GTP over ATP.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Nat. Genet. 33 (suppl.), 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Law, J.A. & Jacobsen, S.E. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ito, S. et al. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He, Y.F. et al. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pfaffeneder, T. et al. Angew. Chem. Int. Edn Engl. 50, 7008–7012 (2011).

    Article  CAS  Google Scholar 

  6. Wu, H. & Zhang, Y. Genes Dev. 25, 2436–2452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pastor, W.A. et al. Nature 473, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tahiliani, M. et al. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lindahl, T. & Barnes, D.E. Cold Spring Harb. Symp. Quant. Biol. 65, 127–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Science 292, 1863–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, D., Bushnell, D.A., Westover, K.D., Kaplan, C.D. & Kornberg, R.D. Cell 127, 941–954 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shukla, S. et al. Nature 479, 74–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinto, P.A. et al. EMBO J. 30, 2431–2444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Core, L.J. & Lis, J.T. Science 319, 1791–1792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de la Mata, M. et al. Mol. Cell 12, 525–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. McDowell, J.C., Roberts, J.W., Jin, D.J. & Gross, C. Science 266, 822–825 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Maiti, A. & Drohat, A.C. J. Biol. Chem. 286, 35334–35338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cortellino, S. et al. Cell 146, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortázar, D. et al. Nature 470, 419–423 (2011).

    Article  PubMed  Google Scholar 

  20. Tini, M. et al. Mol. Cell 9, 265–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Werner, F. & Grohmann, D. Nat. Rev. Microbiol. 9, 85–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Nudler, E. Annu. Rev. Biochem. 78, 335–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Conaway, J.W., Shilatifard, A., Dvir, A. & Conaway, R.C. Trends Biochem. Sci. 25, 375–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Shilatifard, A., Conaway, J.W. & Conaway, R.C. Curr. Opin. Genet. Dev. 7, 199–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Serizawa, H., Conaway, R.C. & Conaway, J.W. J. Biol. Chem. 268, 17300–17308 (1993).

    CAS  PubMed  Google Scholar 

  26. Dai, Q. & He, C. Org. Lett. 13, 3446–3449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sidorenkov, I., Komissarova, N. & Kashlev, M. Mol. Cell 2, 55–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kireeva, M.L., Komissarova, N., Waugh, D.S. & Kashlev, M. J. Biol. Chem. 275, 6530–6536 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, K.A., Simpson, Z.B. & Blom, T. Anal. Biochem. 387, 20–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, K.A., Simpson, Z.B. & Blom, T. Anal. Biochem. 387, 30–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Venter, J.C. et al. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Romiguier, J., Ranwez, V., Douzery, E.J. & Galtier, N. Genome Res. 20, 1001–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sentürker, S. et al. FEBS Lett. 416, 286–290 (1997).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.W. acknowledges support from the US National Institutes of Health (GM085136), start-up funds from the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California, San Diego, and the Kimmel Scholar Award from the Sidney Kimmel Foundation for Cancer Research. C.H. acknowledges the National Institutes of Health for support (GM071440). We thank J. Conaway and R. Conaway (Stowers Institute for Medical Research) for the generous gift of purified mammalian Pol II. We also thank E.P. Geiduschek, J.R. Halpert, X-D. Fu, B. Ren, Y. Zhang and K. Zhang for their insightful comments and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.W. conceived the original idea. M.W.K., C.H. and D.W. designed the experiments. C.S. and X.L. carried out synthesis of DNA templates. J.C. and D.W. purified Pol II. M.W.K. and D.W. performed transcription assays. M.W.K. and D.W. carried out data analysis. M.W.K., J.C., C.H. and D.W. wrote the paper.

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–3 and Supplementary Note (PDF 3097 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellinger, M., Song, CX., Chong, J. et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19, 831–833 (2012). https://doi.org/10.1038/nsmb.2346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing