Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain

Abstract

Peptide macrocycles are found in many biologically active natural products. Their versatility, resistance to proteolysis and ability to traverse membranes has made them desirable molecules. Although technologies exist to synthesize such compounds, the full extent of diversity found among natural macrocycles has yet to be achieved synthetically. Cyanobactins are ribosomal peptide macrocycles encompassing an extraordinarily diverse range of ring sizes, amino acids and chemical modifications. We report the structure, biochemical characterization and initial engineering of the PatG macrocyclase domain of Prochloron sp. from the patellamide pathway that catalyzes the macrocyclization of linear peptides. The enzyme contains insertions in the subtilisin fold to allow it to recognize a three-residue signature, bind substrate in a preorganized and unusual conformation, shield an acyl-enzyme intermediate from water and catalyze peptide bond formation. The ability to macrocyclize a broad range of nonactivated substrates has wide biotechnology applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrocyclization of patellamides.
Figure 2: Structure of PatGmac.
Figure 3: Biochemical characterization of PatGmac and PatGmac mutants.
Figure 4: Proposed mechanism for macrocyclization.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H. & Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 29, 144–222 (2012).

    Article  CAS  Google Scholar 

  2. Mayer, A.M., Rodriguez, A.D., Berlinck, R.G. & Fusetani, N. Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 191–222 (2011).

    Article  Google Scholar 

  3. Driggers, E.M., Hale, S.P., Lee, J. & Terrett, N.K. The exploration of macrocycles for drug discovery–an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  Google Scholar 

  4. Cuevas, C. & Francesch, A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 26, 322–337 (2009).

    Article  CAS  Google Scholar 

  5. McIntosh, J.A., Donia, M.S. & Schmidt, E.W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep. 26, 537–559 (2009).

    Article  CAS  Google Scholar 

  6. Sivonen, K., Leikoski, N., Fewer, D.P. & Jokela, J. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).

    Article  CAS  Google Scholar 

  7. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  Google Scholar 

  8. Long, P.F., Dunlap, W.C., Battershill, C.N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem. 6, 1760–1765 (2005).

    Article  CAS  Google Scholar 

  9. Schmidt, E.W. The hidden diversity of ribosomal peptide natural products. BMC Biol. 8, 83 (2010).

    Article  Google Scholar 

  10. Houssen, W.E. & Jaspars, M. Azole-based cyclic peptides from the sea squirt Lissoclinum patella: old scaffolds, new avenues. ChemBioChem 11, 1803–1815 (2010).

    Article  CAS  Google Scholar 

  11. Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    Article  CAS  Google Scholar 

  12. Donia, M.S., Ravel, J. & Schmidt, E.W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

    Article  CAS  Google Scholar 

  13. Houssen, W.E. et al. Solution structure of the leader sequence of the patellamide precursor peptide, PatE1–34. ChemBioChem. 11, 1867–1873 (2010).

    Article  CAS  Google Scholar 

  14. Lee, J., McIntosh, J., Hathaway, B.J. & Schmidt, E.W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc. 131, 2122–2124 (2009).

    Article  CAS  Google Scholar 

  15. McIntosh, J.A. et al. Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J. Am. Chem. Soc. 132, 15499–15501 (2010).

    Article  CAS  Google Scholar 

  16. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  17. Katoh, T., Goto, Y., Reza, M.S. & Suga, H. Ribosomal synthesis of backbone macrocyclic peptides. Chem. Commun. (Camb.) 47, 9946–9958 (2011).

    Article  CAS  Google Scholar 

  18. Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A. & Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000).

    Article  CAS  Google Scholar 

  19. Schneider, A. & Marahiel, M.A. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch. Microbiol. 169, 404–410 (1998).

    Article  CAS  Google Scholar 

  20. Cane, D.E. & Walsh, C.T. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6, R319–R325 (1999).

    Article  CAS  Google Scholar 

  21. Liu, H. & Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif. 63, 102–111 (2009).

    Article  CAS  Google Scholar 

  22. Dodson, G. & Wlodawer, A. Catalytic triads and their relatives. Trends Biochem. Sci. 23, 347–352 (1998).

    Article  CAS  Google Scholar 

  23. Perona, J.J. & Craik, C.S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360 (1995).

    Article  CAS  Google Scholar 

  24. Ziemert, N. et al. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Appl. Environ. Microbiol. 74, 1791–1797 (2008).

    Article  CAS  Google Scholar 

  25. Donia, M.S. & Schmidt, E.W. Linking chemistry and genetics in the growing cyanobactin natural products family. Chem. Biol. 18, 508–519 (2011).

    Article  CAS  Google Scholar 

  26. Popp, M.W. & Ploegh, H.L. Making and breaking peptide bonds: protein engineering using sortase. Angew. Chem. Int. Edn Engl. 50, 5024–5032 (2011).

    Article  CAS  Google Scholar 

  27. Ahvazi, B. & Steinert, P.M. A model for the reaction mechanism of the transglutaminase 3 enzyme. Exp. Mol. Med. 35, 228–242 (2003).

    Article  CAS  Google Scholar 

  28. Zhu, X., Robinson, D.A., McEwan, A.R., O'Hagan, D. & Naismith, J.H. Mechanism of enzymatic fluorination in Streptomyces cattleya. J. Am. Chem. Soc. 129, 14597–14604 (2007).

    Article  CAS  Google Scholar 

  29. Milne, B.F., Long, P.F., Starcevic, A., Hranueli, D. & Jaspars, M. Spontaneity in the patellamide biosynthetic pathway. Org. Biomol. Chem. 4, 631–638 (2006).

    Article  CAS  Google Scholar 

  30. Liu, H. & Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif. 63, 102–111 (2009).

    Article  CAS  Google Scholar 

  31. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  32. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2009).

    Article  Google Scholar 

  33. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D. Biol. Crystallogr. 60, 432–438 (2004).

    Article  Google Scholar 

  34. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D. Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  35. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).

    Article  CAS  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  37. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  38. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763 (1994).

  39. Cammish, L.E. & Kates,, S.A. Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Oxford Univ. Press, 2000).

Download references

Acknowledgements

We would like to thank J. Reeks for help with the manuscript. W.E.H. is supported as the recipient of a SULSA postdoctoral fellowship. J.K. is supported as the recipient of a DFG postdoctoral fellowship. M.C.M.S. acknowledges funding from the BBSRC project grant BB/F003439/1. Mass spectrometry is supported by the Wellcome Trust. The project is funded by the Leverhulm Trust Grant RPG-2012-504 (J.H.N. and M.J.).

Author information

Authors and Affiliations

Authors

Contributions

J.K., A.B., W.E.H. and J.H.N. carried out experiments, interpreted data and wrote the paper. D.Z., F.M., S.S., J.V., A.F.N., C.H.B. and L.T. carried out experiments and interpreted data. M.C.M.S. and M.J. interpreted data and wrote the paper.

Corresponding authors

Correspondence to Marcel Jaspars or James H Naismith.

Ethics declarations

Competing interests

The Universities of St Andrews and Aberdeen have filed a patent application with the UK Patent Office on the use of the biosynthetic enzymes from the patellamide pathway. J.K., A.B., J.H.N., M.J., W.E.H. and M.C.M.S. are among those listed as inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-5 (PDF 4179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehnke, J., Bent, A., Houssen, W. et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat Struct Mol Biol 19, 767–772 (2012). https://doi.org/10.1038/nsmb.2340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing