Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of Rev1 by the Fanconi anemia core complex

Abstract

The 15 known Fanconi anemia proteins cooperate in a pathway that regulates DNA interstrand cross-link repair. Recent studies indicate that the Fanconi anemia pathway also controls Rev1-mediated translesion DNA synthesis (TLS). We identified Fanconi anemia–associated protein (FAAP20), an integral subunit of the multisubunit Fanconi anemia core complex. FAAP20 binds to FANCA subunit and is required for stability of the complex and monoubiquitination of FANCD2. FAAP20 contains a ubiquitin-binding zinc finger 4 domain and binds to the monoubiquitinated form of Rev1. FAAP20 binding stabilizes Rev1 nuclear foci and promotes interaction of the Fanconi anemia core with PCNA–Rev1 DNA damage bypass complexes. FAAP20 therefore provides a critical link between the Fanconi anemia pathway and TLS polymerase activity. We propose that the Fanconi anemia core complex regulates cross-link repair by channeling lesions to damage bypass pathways and preventing large DNA insertions and deletions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C1orf86 is required for Fanconi anemia pathway activation.
Figure 2: FAAP20 is required for stability of Fanconi anemia core complex.
Figure 3: FAAP20 interacts with Rev1 and promotes efficient Rev1 focus formation.
Figure 4: Monoubiquitination of Rev1 enhances interaction with FAAP20.
Figure 5: FAAP20 and Rev1 colocalize at sites of replication stress.
Figure 6: Branched model of Fanconi anemia pathway.

Similar content being viewed by others

References

  1. Joenje, H. & Patel, K.J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet. 2, 446–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kee, Y. & D'Andrea, A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 24, 1680–1694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ciccia, A. et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25, 331–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joo, W. et al. Structure of the FANCI–FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333, 312–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamamoto, K.N. et al. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc. Natl. Acad. Sci. USA 108, 6492–6496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cybulski, K.E. & Howlett, N.G. FANCP/SLX4: A Swiss army knife of DNA interstrand crosslink repair. Cell Cycle 10, 1757–1763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, M. & D'Andrea, A.D. A new nuclease member of the FAN club. Nat. Struct. Mol. Biol. 17, 926–928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann, K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst.) 8, 544–556 (2009).

    Article  CAS  Google Scholar 

  11. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papadopoulo, D., Guillouf, C., Mohrenweiser, H. & Moustacchi, E. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc. Natl. Acad. Sci. USA 87, 8383–8387 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mirchandani, K.D. & D'Andrea, A.D. The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp. Cell Res. 312, 2647–2653 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kannouche, P.L., Wing, J. & Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann, A.R. et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst.) 6, 891–899 (2007).

    Article  CAS  Google Scholar 

  16. Waters, L.S. et al. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Nelson, J.R., Lawrence, C.W. & Hinkle, D.C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Mirchandani, K.D., McCaffrey, R.M. & D'Andrea, A.D. The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair (Amst.) 7, 902–911 (2008).

    Article  CAS  Google Scholar 

  20. Hicks, J.K. et al. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links. Mol. Cell. Biol. 30, 1217–1230 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, T.T. & D'Andrea, A.D. Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7, 323–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, K., Moldovan, G.L. & D'Andrea, A.D. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J. Biol. Chem. 285, 19085–19091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo, C. et al. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol. Cell 23, 265–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol. 26, 8892–8900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wood, A., Garg, P. & Burgers, P.M.J. A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J. Biol. Chem. 282, 20256–20263 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hershko, A. & Rose, I.A. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc. Natl. Acad. Sci. USA 84, 1829–1833 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parris, C.N. & Seidman, M.M. A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene 117, 1–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Choi, J.-H. & Pfeifer, G.P. The role of DNA polymerase eta in UV mutational spectra. DNA Repair (Amst.) 4, 211–220 (2005).

    Article  CAS  Google Scholar 

  30. Deans, A.J. & West, S.C. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11, 467–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bunting, S.F. & Nussenzweig, A. Dangerous liaisons: Fanconi anemia and toxic nonhomologous end joining in DNA crosslink repair. Mol. Cell 39, 164–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moldovan, G.-L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Ross, A.-L., Simpson, L.J. & Sale, J.E. Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1. Nucleic Acids Res. 33, 1280–1289 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arakawa, H. et al. A Role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol. 4, e366 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Song, I.Y. et al. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J. Biol. Chem. 285, 31525–31536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams, S.A., Longerich, S., Sung, P., Vaziri, C. & Kupfer, G.M. The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 117, 5078–5087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park, H.K., Wang, H., Zhang, J., Datta, S. & Fei, P. Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage. PLoS ONE 5, e13313 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Geng, L., Huntoon, C.J. & Karnitz, L.M. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J. Cell Biol. 191, 249–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palle, K. & Vaziri, C. Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA topoisomerase 1 inhibition. Cell Cycle 10, 1625–1638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keaton, M.A. & Dutta, A. Rad18 emerges as a critical regulator of the Fanconi anemia pathway. Cell Cycle 10, 2414–2415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Howlett, N.G., Taniguchi, T., Durkin, S.G., D'Andrea, A.D. & Glover, T.W. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14, 693–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Howlett, N.G., Harney, J.A., Rego, M.A., Kolling, F.W. & Glover, T.W. Functional interaction between the Fanconi anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J. Biol. Chem. 284, 28935–28942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, K. et al. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev. 25, 1847–1858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, A.T. et al. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev. 25, 1859–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, J.M., Kee, Y., Gurtan, A. & D'Andrea, A.D. Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood 111, 5215–5222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L.A. Moreau for chromosome aberration assay and K. Hofmann (Miltenyi Biotec), I. Dikic (Institute of Biochemistry II), A.R. Lehmann (University of Sussex), and E.H.-Y. Cheng (Memorial Sloan-Kettering Cancer Center) for reagents. We also thank members of D'Andrea laboratory for valuable input and helpful discussions. H.K. is a recipient of the Leukemia and Lymphoma Society Career Development Fellowship. K.Y is a Harvard University Presidential Scholar. This work was supported by grants RO1DK43889 and RO1HL52725 to A.D.D.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and A.D.D. designed and interpreted experiments. H.K. and D.D. conducted experiments. K.Y. carried out bioinformatics analysis. H.K. and A.D.D. wrote the manuscript. A.D.D. directed the project.

Corresponding author

Correspondence to Alan D D'Andrea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 1572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Yang, K., Dejsuphong, D. et al. Regulation of Rev1 by the Fanconi anemia core complex. Nat Struct Mol Biol 19, 164–170 (2012). https://doi.org/10.1038/nsmb.2222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing