Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A metal switch for controlling the activity of molecular motor proteins

Abstract

Kinesins are molecular motors that require a divalent metal ion (for example, Mg2+) to convert the energy of ATP hydrolysis into directed force production along microtubules. Here we present the crystal structure of a recombinant kinesin motor domain bound to Mn2+ and ADP and report on a serine-to-cysteine substitution in the switch 1 motif of kinesin that allows its ATP hydrolysis activity to be controlled by adjusting the ratio of Mn2+ to Mg2+. This mutant kinesin binds ATP similarly in the presence of either metal ion, but its ATP hydrolysis activity is greatly diminished in the presence of Mg2+. In human kinesin-1 and kinesin-5 as well as Drosophila melanogaster kinesin-10 and kinesin-14, this defect is rescued by Mn2+, providing a way to control both the enzymatic activity and force-generating ability of these nanomachines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Kin10–MnADP and the ATP hydrolysis–competent state for kinesin.
Figure 2: Metal and nucleotide binding to kinesin.
Figure 3: Mn2+ rescue of kinesin (serine-to-cysteine mutant) ATPase in the absence and presence of microtubules.
Figure 4: Acid-quench and phosphate release kinetics.
Figure 5: Mn2+ rescue of in vitro microtubule gliding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  PubMed  Google Scholar 

  2. Vale, R.D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Marx, A., Muller, J. & Mandelkow, E. The structure of microtubule motor proteins. Adv. Protein Chem. 71, 299–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Frederiksen, J.K. & Piccirilli, J.A. Identification of catalytic metal ion ligands in ribozymes. Methods 49, 148–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. & Cech, T.R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Warnecke, J.M. et al. Ribonuclease P (RNase P) RNA is converted to a Cd2+-ribozyme by a single Rp-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc. Natl. Acad. Sci. USA 93, 8924–8928 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peracchi, A., Beigelman, L., Scott, E.C., Uhlenbeck, O.C. & Herschlag, D. Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J. Biol. Chem. 272, 26822–26826 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Sontheimer, E.J., Sun, S. & Piccirilli, J.A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sarnovsky, R.J., May, E.W. & Craig, N.L. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 15, 6348–6361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allingham, J.S., Pribil, P.A. & Haniford, D.B. All three residues of the Tn 10 transposase DDE catalytic triad function in divalent metal ion binding. J. Mol. Biol. 289, 1195–1206 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, K., Wong, S. & Bushman, F. Metal binding by the D, DX35E motif of human immunodeficiency virus type 1 integrase: selective rescue of Cys substitutions by Mn2+in vitro. J. Virol. 78, 6715–6722 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jaffe, E.K. & Cohn, M. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. J. Biol. Chem. 254, 10839–10845 (1979).

    CAS  PubMed  Google Scholar 

  13. Cochran, J.C. & Gilbert, S.P. ATPase mechanism of Eg5 in the absence of microtubules: insight into microtubule activation and allosteric inhibition by monastrol. Biochemistry 44, 16633–16648 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Cochran, J.C. et al. ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parke, C.L., Wojcik, E.J., Kim, S. & Worthylake, D.K. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J. Biol. Chem. 285, 5859–5867 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Reed,, G.H. & Markham,, G.D. EPR of Mn(II) Complexes with enzymes and other proteins. in Biological Magnetic Resonance (eds. Berliner, L.J.& Reuben, J.) 73–142 (Plenum, New York, 1984).

  17. Leonard, M., Song, B.D., Ramachandran, R. & Schmid, S.L. Robust colorimetric assays for dynamin's basal and stimulated GTPase activities. Methods Enzymol. 404, 490–503 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Brune, M., Hunter, J.L., Corrie, J.E. & Webb, M.R. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33, 8262–8271 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Fisher, A.J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP·BeFx and MgADP·AlF4−. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Pai, E.F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shah, K., Liu, Y., Deirmengian, C. & Shokat, K.M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. USA 94, 3565–3570 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bishop, A.C. et al. Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8, 257–266 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Shogren-Knaak, M.A., Alaimo, P.J. & Shokat, K.M. Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Dev. Biol. 17, 405–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Specht, K.M. & Shokat, K.M. The emerging power of chemical genetics. Curr. Opin. Cell Biol. 14, 155–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Reddi, A.R., Jensen, L.T. & Culotta, V.C. Manganese homeostasis in Saccharomyces cerevisiae. Chem. Rev. 109, 4722–4732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauer, C.B., Holden, H.M., Thoden, J.B., Smith, R. & Rayment, I. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J. Biol. Chem. 275, 38494–38499 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J. & Vale, R.D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maliga, Z., Kapoor, T.M. & Mitchison, T.J. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol. 9, 989–996 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Cui, W. et al. Drosophila Nod protein binds preferentially to the plus ends of microtubules and promotes microtubule polymerization in vitro. Mol. Biol. Cell 16, 5400–5409 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chandra, R., Salmon, E.D., Erickson, H.P., Lockhart, A. & Endow, S.A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 (1993).

    CAS  PubMed  Google Scholar 

  32. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  33. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  34. Gilbert, S.P. & Mackey, A.T. Kinetics: a tool to study molecular motors. Methods 22, 337–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Cochran, J.C., Krzysiak, T.C. & Gilbert, S.P. Pathway of ATP hydrolysis by monomeric kinesin Eg5. Biochemistry 45, 12334–12344 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hyman, A. et al. Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Stojanoff of the National Synchrotron Light Source beam line X6A for help with data collection, R. Sloboda, A. Lavanway and H. Sardar for help with the fluorescence microscopy, and W. Casey for electron paramagnetic resonance training. The project was supported by F32AR054653 (US National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH, NIAMS)) to J.C.C. and GM097079 (NIH, National Institute of General Medical Sciences (NIGMS)) to F.J.K., and research carried out at the X6A beam line was funded by the NIH, NIGMS, under agreement GM-0080. The National Synchrotron Light Source at Brookhaven National Laboratory is supported by the US Department of Energy, under contract DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

J.C.C. cloned constructs, purified protein, crystallized, collected, processed and refined X-ray data with help from Y.C.Z. J.C.C. carried out kinetic assays, analyzed kinetic data, did EPR experiments, conducted microtubule gliding assays, and wrote the paper. D.E.W. and F.J.K. were involved in study conception, study design and editing the final manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to F Jon Kull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–2 and Supplementary Methods (PDF 478 kb)

Supplementary Movie 1

MT gliding by Kin1(WT) and Kin1(SC) areshown in the presence of MgATP and MnATP (MOV 2351 kb)

Supplementary Movie 2

Long time-lapse movie of MT gliding by Kin1(SC) in the presence of MgATP. (MOV 3430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochran, J., Zhao, Y., Wilcox, D. et al. A metal switch for controlling the activity of molecular motor proteins. Nat Struct Mol Biol 19, 122–127 (2012). https://doi.org/10.1038/nsmb.2190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing