Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins

Abstract

Arginine dimethylation plays critical roles in the assembly of ribonucleoprotein complexes in pre-mRNA splicing and piRNA pathways. We report solution structures of SMN and SPF30 Tudor domains bound to symmetric and asymmetric dimethylated arginine (DMA) that is inherent in the RNP complexes. An aromatic cage in the Tudor domain mediates dimethylarginine recognition by electrostatic stabilization through cation-π interactions. Distinct from extended Tudor domains, dimethylarginine binding by the SMN and SPF30 Tudor domains is independent of proximal residues in the ligand. Yet, enhanced micromolar affinities are obtained by external cooperativity when multiple methylation marks are presented in arginine- and glycine-rich peptide ligands. A hydrogen bond network in the SMN Tudor domain, including Glu134 and a tyrosine hydroxyl of the aromatic cage, enhances cation-π interactions and is impaired by a mutation causing an E134K substitution associated with spinal muscular atrophy. Our structural analysis enables the design of an optimized binding pocket and the prediction of DMA binding properties of Tudor domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tudor binding to methylated arginines.
Figure 2: Recognition of sDMA and aDMA by SMN and SPF30 Tudor domains.
Figure 3: Implications of sDMA recognition in snRNP and piRNP assembly pathways.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Biological Magnetic Resonance Data Bank

References

  1. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    Article  CAS  Google Scholar 

  2. Siomi, M.C., Mannen, T. & Siomi, H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev. 24, 636–646 (2010).

    Article  CAS  Google Scholar 

  3. Boisvert, F.M., Cote, J., Boulanger, M.C. & Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2, 1319–1330 (2003).

    Article  CAS  Google Scholar 

  4. Brahms, H., Meheus, L., de Brabandere, V., Fischer, U. & Luhrmann, R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531–1542 (2001).

    Article  CAS  Google Scholar 

  5. Friesen, W.J., Massenet, S., Paushkin, S., Wyce, A. & Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell 7, 1111–1117 (2001).

    Article  CAS  Google Scholar 

  6. Côté, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280, 28476–28483 (2005).

    Article  Google Scholar 

  7. Friberg, A., Corsini, L., Mourao, A. & Sattler, M. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J. Mol. Biol. 387, 921–934 (2009).

    Article  CAS  Google Scholar 

  8. Bühler, D., Raker, V., Lührmann, R. & Fischer, U. Essential role for the Tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet. 8, 2351–2357 (1999).

    Article  Google Scholar 

  9. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).

    Article  CAS  Google Scholar 

  10. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).

    Article  CAS  Google Scholar 

  11. Meister, G. et al. SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. EMBO J. 20, 2304–2314 (2001).

    Article  CAS  Google Scholar 

  12. Rappsilber, J., Ajuh, P., Lamond, A.I. & Mann, M. SPF30 is an essential human splicing factor required for assembly of the U4/U5/U6 tri-small nuclear ribonucleoprotein into the spliceosome. J. Biol. Chem. 276, 31142–31150 (2001).

    Article  CAS  Google Scholar 

  13. Paushkin, S., Gubitz, A.K., Massenet, S. & Dreyfuss, G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr. Opin. Cell Biol. 14, 305–312 (2002).

    Article  CAS  Google Scholar 

  14. Meister, G. & Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 21, 5853–5863 (2002).

    Article  CAS  Google Scholar 

  15. Selenko, P. et al. SMN Tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8, 27–31 (2001).

    Article  CAS  Google Scholar 

  16. Sprangers, R., Groves, M.R., Sinning, I. & Sattler, M. High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507–520 (2003).

    Article  CAS  Google Scholar 

  17. Hebert, M.D., Shpargel, K.B., Ospina, J.K., Tucker, K.E. & Matera, A.G. Coilin methylation regulates nuclear body formation. Dev. Cell 3, 329–337 (2002).

    Article  CAS  Google Scholar 

  18. Renvoisé, B. et al. Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J. Cell Sci. 119, 680–692 (2006).

    Article  Google Scholar 

  19. Vagin, V.V. et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23, 1749–1762 (2009).

    Article  CAS  Google Scholar 

  20. Kirino, Y. et al. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat. Cell Biol. 11, 652–658 (2009).

    Article  CAS  Google Scholar 

  21. Nishida, K.M. et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 28, 3820–3831 (2009).

    Article  CAS  Google Scholar 

  22. Liu, H. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev. 24, 1876–1881 (2010).

    Article  CAS  Google Scholar 

  23. Liu, K. et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc. Natl. Acad. Sci. USA 107, 18398–18403 (2010).

    Article  CAS  Google Scholar 

  24. Botuyan, M.V. et al. Structural basis for the methylation state–specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  Google Scholar 

  25. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. Science 312, 748–751 (2006).

    Article  CAS  Google Scholar 

  26. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  27. Mecozzi, S., West, A.P. Jr. & Dougherty, D.A. Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA 93, 10566–10571 (1996).

    Article  CAS  Google Scholar 

  28. Gallivan, J.P. & Dougherty, D.A. Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  Google Scholar 

  29. Chen, C. et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc. Natl. Acad. Sci. USA 106, 20336–20341 (2009).

    Article  CAS  Google Scholar 

  30. Chari, A., Paknia, E. & Fischer, U. The role of RNP biogenesis in spinal muscular atrophy. Curr. Opin. Cell Biol. 21, 387–393 (2009).

    Article  CAS  Google Scholar 

  31. Pellizzoni, L., Charroux, B. & Dreyfuss, G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl. Acad. Sci. USA 96, 11167–11172 (1999).

    Article  CAS  Google Scholar 

  32. Eggert, C., Chari, A., Laggerbauer, B. & Fischer, U. Spinal muscular atrophy: the RNP connection. Trends Mol. Med. 12, 113–121 (2006).

    Article  CAS  Google Scholar 

  33. Raker, V.A., Plessel, G. & Lührmann, R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 15, 2256–2269 (1996).

    Article  CAS  Google Scholar 

  34. Chari, A. et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135, 497–509 (2008).

    Article  CAS  Google Scholar 

  35. Zhang, R. et al. Structure of a key intermediate of the SMN complex reveals gemin2′s crucial function in snRNP assembly. Cell 146, 384–395 (2011).

    Article  CAS  Google Scholar 

  36. Friesen, W.J. et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. 21, 8289–8300 (2001).

    Article  CAS  Google Scholar 

  37. Kessler, H. Detection of hindered rotation and inversion by NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 9, 219–235 (1970).

    Article  CAS  Google Scholar 

  38. Cheng, D., Cote, J., Shaaban, S. & Bedford, M.T. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell 25, 71–83 (2007).

    Article  Google Scholar 

  39. Sims, R.J. et al. The C-terminal domain of RNA polymerase IIiIs modified by site-specific methylation. Science 332, 99–103 (2011).

    Article  CAS  Google Scholar 

  40. Kirino, Y. et al. Arginine methylation of Vasa protein is conserved across phyla. J. Biol. Chem. 285, 8148–8154 (2010).

    Article  CAS  Google Scholar 

  41. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  42. Sattler, M., Schleucher, J.R. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  43. Breeze, A.L. Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog. Nucl. Magn. Reson. Spectrosc. 36, 323–372 (2000).

    Article  CAS  Google Scholar 

  44. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wuthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  45. Grzesiek, S. & Bax, A. A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins. J. Biomol. NMR 9, 207–211 (1997).

    Article  CAS  Google Scholar 

  46. Hu, J.S. & Bax, A. χ1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNCγ couplings in isotopically enriched proteins. J. Biomol. NMR 9, 323–328 (1997).

    Article  CAS  Google Scholar 

  47. Güntert, P. Automated structure determination from NMR spectra. Eur. Biophys. J. 38, 129–143 (2009).

    Article  Google Scholar 

  48. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    Article  CAS  Google Scholar 

  49. Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).

    Article  CAS  Google Scholar 

  50. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  51. Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  52. Kleywegt, G.J. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 63, 94–100 (2007).

    Article  CAS  Google Scholar 

  53. Becke, A. Density-functional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  54. Lee, C., Yang, W. & Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  55. Gill, S.J. Thermodynamics of ligand-binding to proteins. Pure Appl. Chem. 61, 1009–1020 (1989).

    Article  CAS  Google Scholar 

  56. Capaldi, S. et al. The X-ray structure of zebrafish (Danio rerio) ileal bile acid-binding protein reveals the presence of binding sites on the surface of the protein molecule. J. Mol. Biol. 385, 99–116 (2009).

    Article  CAS  Google Scholar 

  57. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007).

Download references

Acknowledgements

The authors are grateful to G. Demiraslan (Helmholtz Zentrum München) for protein production. We thank I. Poser and T. Hyman (Max Planck Institute of Molecular Cell Biology and Genetics) for the gift of the SMN-GFP stable cell line, J. Brennecke for helpful discussion and the Bavarian NMR Centre for NMR time. K.T. acknowledges support by the Alexander von Humboldt foundation; T.M. acknowledges support by a European Molecular Biology Organization Long Term Fellowship and a Schrödinger Fellowship from the Austrian Science Fund. This work was supported by the Deutsche Forschungsgemeinschaft (M.S. and K.M.N.).

Author information

Authors and Affiliations

Authors

Contributions

K.T. carried out molecular biology experiments, protein purification, NMR analysis and structure calculations. T.M. did quantum chemical calculations and contributed to NMR experiments. D.F. analyzed the ITC experiments. K.M.N. and U.F. designed, and M.M. and C.E. conducted, immunoprecipitation experiments. K.T. and M.S. conceived and designed the project and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael Sattler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1 and 2 (PDF 10421 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripsianes, K., Madl, T., Machyna, M. et al. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18, 1414–1420 (2011). https://doi.org/10.1038/nsmb.2185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing