Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks

Abstract

In higher eukaryotes, the dynamics of replisome components during fork collapse and restart are poorly understood. Here we have reconstituted replication fork collapse and restart by inducing single-strand DNA lesions that create a double-strand break in one of the replicated sister chromatids after fork passage. We found that, upon fork collapse, the active CDC45–MCM–GINS (CMG) helicase complex loses its GINS subunit. A functional replisome is restored by the reloading of GINS and polymerase ɛ onto DNA in a fashion that is dependent on RAD51 and MRE11 but independent of replication origin assembly and firing. PCNA mutant alleles defective in break-induced replication (BIR) are unable to support restoration of replisome integrity. These results show that, in higher eukaryotes, replisomes are partially dismantled after fork collapse and fully re-established by a recombination-mediated process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAD51 is required for DNA replication in the presence of forks collapsed by a single-strand break in the template.
Figure 2: RAD51 is required for stable chromatin association of fork proteins in the presence of template breakage.
Figure 3: RAD51 is required for origin-independent fork restart and reloading of replisome components after fork collapse.
Figure 4: MRE11 nuclease activity is required for DNA replication upon fork collapse.
Figure 5: The role of PCNA in DNA replication and chromatin association of replication proteins upon fork collapse.
Figure 6: A model of replication fork collapse and restart.

Similar content being viewed by others

References

  1. Michel, B., Grompone, G., Flores, M.J. & Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl. Acad. Sci. USA 101, 12783–12788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santocanale, C., Sharma, K. & Diffley, J.F. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13, 2360–2364 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woodward, A.M. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petermann, E. & Helleday, T. Pathways of mammalian replication fork restart. Nat. Rev. Mol. Cell Biol. 11, 683–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Chang, D.J. & Cimprich, K.A. DNA damage tolerance: when it's OK to make mistakes. Nat. Chem. Biol. 5, 82–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersen, P.L., Xu, F. & Xiao, W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18, 162–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Daigaku, Y., Davies, A.A. & Ulrich, H.D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951–955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karras, G.I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lambert, S. et al. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol. Cell 39, 346–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Moriel-Carretero, M. & Aguilera, A. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Mol. Cell 37, 690–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Petermann, E., Orta, M.L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huertas, P. DNA resection in eukaryotes: deciding how to fix the break. Nat. Struct. Mol. Biol. 17, 11–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Llorente, B., Smith, C.E. & Symington, L.S. Break-induced replication: what is it and what is it for? Cell Cycle 7, 859–864 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Lydeard, J.R. et al. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24, 1133–1144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gambus, A. et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, S. & Araki, H. Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 119, 565–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Moyer, S.E., Lewis, P.W. & Botchan, M.R. Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236–10241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Errico, A. & Costanzo, V. Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep. 11, 270–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Haro, L.P. et al. Metnase promotes restart and repair of stalled and collapsed replication forks. Nucleic Acids Res. 38, 5681–5691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashimoto, Y., Chaudhuri, A.R., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trenz, K., Errico, A. & Costanzo, V. Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J. 27, 876–885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krokan, H., Wist, E. & Krokan, R.H. Aphidicolin inhibits DNA synthesis by DNA polymerase alpha and isolated nuclei by a similar mechanism. Nucleic Acids Res. 9, 4709–4719 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sutherland, G.R. The role of nucleotides in human fragile site expression. Mutat. Res. 200, 207–213 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Balestrini, A., Cosentino, C., Errico, A., Garner, E. & Costanzo, V. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat. Cell Biol. 12, 484–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chong, J.P., Mahbubani, H.M., Khoo, C.Y. & Blow, J.J. Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. McGarry, T.J. & Kirschner, M.W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Costanzo, V. et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol. Cell 6, 649–659 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet. 30, 290–294 (2002).

    Article  PubMed  Google Scholar 

  29. Edwards, M.C. et al. MCM2–7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33057 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Pacek, M., Tutter, A.V., Kubota, Y., Takisawa, H. & Walter, J.C. Localization of MCM2–7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21, 581–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Mimura, S. & Takisawa, H. Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J. 17, 5699–5707 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Errico, A. et al. Tipin/Tim1/And1 protein complex promotes Pol alpha chromatin binding and sister chromatid cohesion. EMBO J. 28, 3681–3692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sclafani, R.A. & Holzen, T.M. Cell cycle regulation of DNA replication. Annu. Rev. Genet. 41, 237–280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Trenz, K., Smith, E., Smith, S. & Costanzo, V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 25, 1764–1774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bryant, H.E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ira, G. & Haber, J.E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22, 6384–6392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis, A.P. & Symington, L.S. RAD51-dependent break-induced replication in yeast. Mol. Cell. Biol. 24, 2344–2351 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malkova, A. et al. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 15, 1055–1060 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Signon, L., Malkova, A., Naylor, M.L., Klein, H. & Haber, J.E. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21, 2048–2056 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kraus, E., Leung, W.Y. & Haber, J.E. Break-induced replication: a review and an example in budding yeast. Proc. Natl. Acad. Sci. USA 98, 8255–8262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, S.J. & Hochstrasser, M. The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J. Cell Biol. 160, 1069–1081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kubota, Y. et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17, 1141–1152 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takayama, Y. et al. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 17, 1153–1165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Costa, A. et al. The structural basis for MCM2–7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol. 18, 471–477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bruck, I. & Kaplan, D.L. GINS and Sld3 compete with one another for Mcm2–7 and Cdc45 binding. J. Biol. Chem. 286, 14157–14167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bjergbaek, L., Cobb, J.A., Tsai-Pflugfelder, M. & Gasser, S.M. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24, 405–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Cobb, J.A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tittel-Elmer, M., Alabert, C., Pasero, P. & Cobb, J.A. The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J. 28, 1142–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muramatsu, S., Hirai, K., Tak, Y.S., Kamimura, Y. & Araki, H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ɛ, and GINS in budding yeast. Genes Dev. 24, 602–612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawamoto, T. et al. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 20, 793–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. McIlwraith, M.J. et al. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Stephens, P.J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buis, J. et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135, 85–96 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Haber and J. Lydeard for sharing unpublished results on PCNA BIR–defective mutants. We thank members of the genome stability lab for their insightful comments. We thank H. Mahbubani and J. Gannon for technical support with X. laevis. This work was funded by Cancer Research UK. V.C. is also supported by the European Research Council (ERC) startup grant (206281), the Lister Institute of Preventive Medicine and the European Molecular Biology Organization (EMBO) Young Investigator Program (YIP).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and F.P. performed experiments. Y.H. and V.C. analyzed the results and wrote the manuscript.

Corresponding author

Correspondence to Vincenzo Costanzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, Y., Puddu, F. & Costanzo, V. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 19, 17–24 (2012). https://doi.org/10.1038/nsmb.2177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing