Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization

Abstract

Broadly neutralizing antibodies such as 2F5 are directed against the membrane-proximal external region (MPER) of HIV-1 GP41 and recognize well-defined linear core sequences. These epitopes can be engrafted onto protein scaffolds to serve as immunogens with high structural fidelity. Although antibodies that bind to this core GP41 epitope can be elicited, they lack neutralizing activity. To understand this paradox, we used biophysical methods to investigate the binding of human 2F5 to the MPER in a membrane environment, where it resides in vivo. Recognition is stepwise, through a paratope more extensive than core binding site contacts alone, and dynamic rearrangement through an apparent scoop-like movement of heavy chain complementarity-determining region 3 (CDRH3) is essential for MPER extraction from the viral membrane. Core-epitope recognition on the virus requires the induction of conformational changes in both the MPER and the paratope. Hence, target neutralization through this lipid-embedded viral segment places stringent requirements on the plasticity of the antibody combining site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of 2F5, 2F5 mutant L100AS F100BS and 11F10 to MPER in solution versus on a lipid membrane.
Figure 2: HX-MS of 2F5 and mutant 2F5 variants.
Figure 3: Mass spectra showing the loss of protection from deuterium exchange in 2F5 mutants.
Figure 4: NMR characterization of the MPER segment from HIV str. HXB2 on 2F5 Fab ligation.
Figure 5: Influence of C-terminal MPER residues on 2F5 and 2F5 binding, as measured by surface plasmon resonance (SPR).
Figure 6: Changes in membrane immersion depth in MPER following 2F5 ligation, and the relationship to binding of the trimeric envelope protein.
Figure 7: MPER in complex with 2F5 Fab on viral membrane surface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. McElrath, M.J. & Haynes, B.F. Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 33, 542–554 (2010).

    Article  CAS  Google Scholar 

  2. Han, Y., Wind-Rotolo, M., Yang, H.C., Siliciano, J.D. & Siliciano, R.F. Experimental approaches to the study of HIV-1 latency. Nat. Rev. Microbiol. 5, 95–106 (2007).

    Article  CAS  Google Scholar 

  3. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  Google Scholar 

  4. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  Google Scholar 

  5. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  Google Scholar 

  6. Richman, D.D., Wrin, T., Little, S.J. & Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149 (2003).

    Article  CAS  Google Scholar 

  7. Kwong, P.D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

    Article  CAS  Google Scholar 

  8. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  Google Scholar 

  9. Simek, M.D. et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348 (2009).

    Article  CAS  Google Scholar 

  10. Cardoso, R.M. et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22, 163–173 (2005).

    Article  CAS  Google Scholar 

  11. Muster, T. et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J. Virol. 68, 4031–4034 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson, J.D. et al. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J. Virol. 81, 4033–4043 (2007).

    Article  CAS  Google Scholar 

  13. Trkola, A. et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70, 1100–1108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Walker, L.M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    Article  CAS  Google Scholar 

  15. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010).

    Article  CAS  Google Scholar 

  16. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    Article  CAS  Google Scholar 

  17. Salzwedel, K., West, J.T. & Hunter, E. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J. Virol. 73, 2469–2480 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, Z.Y. et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 28, 52–63 (2008).

    Article  Google Scholar 

  19. Ofek, G. et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol. 78, 10724–10737 (2004).

    Article  CAS  Google Scholar 

  20. Julien, J.P., Bryson, S., Nieva, J.L. & Pai, E.F. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site. J. Mol. Biol. 384, 377–392 (2008).

    Article  CAS  Google Scholar 

  21. Alam, S.M. et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol. 178, 4424–4435 (2007).

    Article  CAS  Google Scholar 

  22. Sánchez-Martínez, S. et al. Specific phospholipid recognition by human immunodeficiency virus type-1 neutralizing anti-gp41 2F5 antibody. FEBS Lett. 580, 2395–2399 (2006).

    Article  Google Scholar 

  23. Scherer, E.M., Leaman, D.P., Zwick, M.B., McMichael, A.J. & Burton, D.R. Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc. Natl. Acad. Sci. USA 107, 1529–1534 (2010).

    Article  CAS  Google Scholar 

  24. Julien, J.P. et al. Ablation of the complementarity-determining region H3 apex of the anti-HIV-1 broadly neutralizing antibody 2F5 abrogates neutralizing capacity without affecting core epitope binding. J. Virol. 84, 4136–4147 (2010).

    Article  CAS  Google Scholar 

  25. Xu, H. et al. Interactions between lipids and human anti-HIV antibody 4E10 can be reduced without ablating neutralizing activity. J. Virol. 84, 1076–1088 (2010).

    Article  CAS  Google Scholar 

  26. Ofek, G. et al. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J. Virol. 84, 2955–2962 (2010).

    Article  CAS  Google Scholar 

  27. Zwick, M.B. et al. The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5. J. Virol. 78, 3155–3161 (2004).

    Article  CAS  Google Scholar 

  28. Alam, S.M. et al. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc. Natl. Acad. Sci. USA 106, 20234–20239 (2009).

    Article  CAS  Google Scholar 

  29. Guenaga, J. et al. Heterologous epitope-scaffold prime:boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 neutralization determinant. PLoS ONE 6, e16074 (2011).

    Article  CAS  Google Scholar 

  30. Ofek, G. et al. Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl. Acad. Sci. USA 107, 17880–17887 (2010).

    Article  CAS  Google Scholar 

  31. Wales, T.E. & Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    Article  CAS  Google Scholar 

  32. Wales, T.E., Fadgen, K.E., Gerhardt, G.C. & Engen, J.R. High-speed and high-resolution UPLC separation at zero degrees celsius. Anal. Chem. 80, 6815–6820 (2008).

    Article  CAS  Google Scholar 

  33. Miranker, A., Robinson, C.V., Radford, S.E., Aplin, R.T. & Dobson, C.M. Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900 (1993).

    Article  CAS  Google Scholar 

  34. Weis, D.D., Wales, T.E., Engen, J.R., Hotchko, M. & Ten Eyck, L.F. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom. 17, 1498–1509 (2006).

    Article  CAS  Google Scholar 

  35. Song, L. et al. Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Proc. Natl. Acad. Sci. USA 106, 9057–9062 (2009).

    Article  CAS  Google Scholar 

  36. Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. & Shimada, I. A novel NMR method for determining the interfaces of large protein-protein complexes. Nat. Struct. Biol. 7, 220–223 (2000).

    Article  CAS  Google Scholar 

  37. Bryson, S., Julien, J.P., Hynes, R.C. & Pai, E.F. Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications. J. Virol. 83, 11862–11875 (2009).

    Article  CAS  Google Scholar 

  38. Tian, Y. et al. Structure-affinity relationships in the gp41 ELDKWA epitope for the HIV-1 neutralizing monoclonal antibody 2F5: effects of side-chain and backbone modifications and conformational constraints. J. Pept. Res. 59, 264–276 (2002).

    Article  CAS  Google Scholar 

  39. Huang, C.C. et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317, 1930–1934 (2007).

    Article  CAS  Google Scholar 

  40. Andreotti, A.H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).

    Article  CAS  Google Scholar 

  41. Lummis, S.C.R. et al. Cis–trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  Google Scholar 

  42. Padlan, E.A. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    Article  CAS  Google Scholar 

  43. Klein, J.S. et al. Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc. Natl. Acad. Sci. USA 106, 7385–7390 (2009).

    Article  CAS  Google Scholar 

  44. Collis, A.V., Brouwer, A.P. & Martin, A.C. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J. Mol. Biol. 325, 337–354 (2003).

    Article  CAS  Google Scholar 

  45. Johnson, G. & Wu, T.T. Preferred CDRH3 lengths for antibodies with defined specificities. Int. Immunol. 10, 1801–1805 (1998).

    Article  CAS  Google Scholar 

  46. Kunert, R., Ruker, F. & Katinger, H. Molecular characterization of five neutralizing anti-HIV type 1 antibodies: identification of nonconventional D segments in the human monoclonal antibodies 2G12 and 2F5. AIDS Res. Hum. Retroviruses 14, 1115–1128 (1998).

    Article  CAS  Google Scholar 

  47. Xiao, X. et al. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem. Biophys. Res. Commun. 390, 404–409 (2009).

    Article  CAS  Google Scholar 

  48. Xiao, X., Chen, W., Feng, Y. & Dimitrov, D.S. Maturation pathways of cross-reactive HIV-1 neutralizing antibodies. Viruses 1, 802–817 (2009).

    Article  CAS  Google Scholar 

  49. Yin, J., Beuscher, A.E.t., Andryski, S.E., Stevens, R.C. & Schultz, P.G. Structural plasticity and the evolution of antibody affinity and specificity. J. Mol. Biol. 330, 651–656 (2003).

    Article  CAS  Google Scholar 

  50. Mikell, I. et al. Characteristics of the earliest cross-neutralizing antibody response to HIV-1. PLoS Pathog. 7, e1001251 (2011).

    Article  CAS  Google Scholar 

  51. Kim, S.T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    Article  CAS  Google Scholar 

  52. Schmitz, K.R. & Ferguson, K.M. Interaction of antibodies with ErbB receptor extracellular regions. Exp. Cell Res. 315, 659–670 (2009).

    Article  CAS  Google Scholar 

  53. Janssen, B.J. et al. Structural basis of semaphorin-plexin signalling. Nature 467, 1118–1122 (2010).

    Article  CAS  Google Scholar 

  54. Pejchal, R. et al. A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies. J. Virol. 83, 8451–8462 (2009).

    Article  CAS  Google Scholar 

  55. Wales, T.E., Fadgen, K.E., Gerhardt, G.C. & Engen, J.R. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal. Chem. 80, 6815–6820 (2008).

    Article  CAS  Google Scholar 

  56. Wang, L., Pan, H. & Smith, D.L. Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Mol. Cell. Proteomics 1, 132–138 (2002).

    Article  CAS  Google Scholar 

  57. Weis, D.D., Engen, J.R. & Kass, I.J. Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J. Am. Soc. Mass Spectrom. 17, 1700–1703 (2006).

    Article  CAS  Google Scholar 

  58. Houde, D., Berkowitz, S.A. & Engen, J.R. The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J. Pharm. Sci. 100, 2071–2086 (2011).

    Article  CAS  Google Scholar 

  59. Shimada, I. NMR techniques for identifying the interface of a larger protein-protein complex: cross-saturation and transferred cross-saturation experiments. Methods Enzymol. 394, 483–506 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants RO1AI84785 and U19AI91693 to E.L.R. and G.W., and a grant from the Gates Foundation, The Collaboration for AIDS Vaccine Discovery (CAVD) Program to E.L.R., G.W. and J.R.E. J.R.E. was also supported by NIH grant RO1-GM086507 and funding through a cooperative research agreement with the Waters Corporation. K.D.R. was supported by The Danish Council for Independent Research in Natural Sciences (FNU grant 09-063876). J.R.E. would like to thank T.E. Wales for expert technical assistance. L.S. was also supported by an US National High Magnetic Field Laboratory (NHMFL) User Collaboration Grants Program award. The NHMFL is funded by the US National Science Foundation through the Cooperative Agreement No. DMR-0654118, the State of Florida, and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

Z.-Y.J.S. designed and conducted NMR experiments, analyzed the data and wrote the paper. G.W. directed the NMR effort and analyzed the NMR structure. A.F.F. contributed to the analysis of the CDRH3 loop. J.-H.W. contributed to the analysis of complex structure. X.S. and K.D.R. designed and carried out HX-MS experiments and contributed to the data analysis. J.R.E. contributed to the design and data analysis of HX-MS experiments and wrote the paper. L.S. conducted EPR experiments. S.M. prepared 2F5 and its variant Fab regions and carried out the labeling of MPER. Y.C. carried out cell transfection and FACS analysis. G.O., Y.Y. and P.D.K. provided 2F5 and mutant antibodies. M.K. designed and carried out SPR experiments, analyzed the data and wrote the paper. E.L.R. directed the project and wrote the paper.

Corresponding author

Correspondence to Ellis L Reinherz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 3597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Sun, ZY., Rand, K. et al. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat Struct Mol Biol 18, 1235–1243 (2011). https://doi.org/10.1038/nsmb.2154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing