Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin

Abstract

Tubulin tyrosine ligase (TTL) catalyzes the post-translational C-terminal tyrosination of α-tubulin. Tyrosination regulates recruitment of microtubule-interacting proteins. TTL is essential. Its loss causes morphogenic abnormalities and is associated with cancers of poor prognosis. We present the first crystal structure of TTL (from Xenopus tropicalis), defining the structural scaffold upon which the diverse TTL-like family of tubulin-modifying enzymes is built. TTL recognizes tubulin using a bipartite strategy. It engages the tubulin tail through low-affinity, high-specificity interactions, and co-opts what is otherwise a homo-oligomerization interface in structurally related ATP grasp-fold enzymes to form a tight hetero-oligomeric complex with the tubulin body. Small-angle X-ray scattering and functional analyses reveal that TTL forms an elongated complex with the tubulin dimer and prevents its incorporation into microtubules by capping the tubulin longitudinal interface, possibly modulating the partition of tubulin between monomeric and polymeric forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray structure of the X. tropicalis TTL, conservation and specialization across the TTL and TTLL tubulin-modifying enzyme families.
Figure 2: Active site architecture and α-tubulin C-terminal peptide recognition.
Figure 3: Molecular determinants of tubulin tyrosination.
Figure 4: Gel filtration studies and sedimentation velocity ultracentrifugation analysis of TTL binding to tubulin.
Figure 5: Model of the TTL–tubulin complex from small-angle X-ray scattering.
Figure 6: TTL inhibits spontaneous polymerization of purified tubulin in vitro and attenuates microtubule growth rates in vivo.
Figure 7: Model for TTL action.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Erck, C. et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. USA 102, 7853–7858 (2005).

    Article  CAS  Google Scholar 

  2. Marcos, S. et al. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS ONE 4, e5405 (2009).

    Article  Google Scholar 

  3. Lafanechère, L. et al. Suppression of tubulin tyrosine ligase during tumor growth. J. Cell Sci. 111, 171–181 (1998).

    PubMed  Google Scholar 

  4. Whipple, R.A. et al. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 70, 8127–8137 (2010).

    Article  CAS  Google Scholar 

  5. Mialhe, A. et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61, 5024–5027 (2001).

    CAS  PubMed  Google Scholar 

  6. Verhey, K.J. & Gaertig, J. The tubulin code. Cell Cycle 6, 2152–2160 (2007).

    Article  CAS  Google Scholar 

  7. Webster, D.R., Gundersen, G.G., Bulinski, J.C. & Borisy, G.G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl. Acad. Sci. USA 84, 9040–9044 (1987).

    Article  CAS  Google Scholar 

  8. Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. Distinct populations of microtubules: tyrosinated and nontyrosinated α tubulin are distributed differently in vivo. Cell 38, 779–789 (1984).

    Article  CAS  Google Scholar 

  9. Bré, M.H., Pepperkok, R., Kreis, T.E. & Karsenti, E. Cellular interactions and tubulin detyrosination in fibroblastic and epithelial cells. Biol. Cell 71, 149–160 (1991).

    Article  Google Scholar 

  10. Kreis, T.E. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6, 2597–2606 (1987).

    Article  CAS  Google Scholar 

  11. Sherwin, T., Schneider, A., Sasse, R., Seebeck, T. & Gull, K. Distinct localization and cell cycle dependence of COOH terminally tyrosinolated α-tubulin in the microtubules of Trypanosoma brucei brucei. J. Cell Biol. 104, 439–446 (1987).

    Article  CAS  Google Scholar 

  12. Wehland, J. & Weber, K. Turnover of the carboxy-terminal tyrosine of α-tubulin and means of reaching elevated levels of detyrosination in living cells. J. Cell Sci. 88, 185–203 (1987).

    CAS  PubMed  Google Scholar 

  13. Peris, L. et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159–1166 (2009).

    Article  CAS  Google Scholar 

  14. Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006).

    Article  CAS  Google Scholar 

  15. Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183, 1223–1233 (2008).

    Article  CAS  Google Scholar 

  16. Weisbrich, A. et al. Structure-function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14, 959–967 (2007).

    Article  CAS  Google Scholar 

  17. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559–567 (2009).

    Article  CAS  Google Scholar 

  18. Liao, G. & Gundersen, G.G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998).

    Article  CAS  Google Scholar 

  19. Barra, H.S., Rodriguez, J.A., Arce, C.A. & Caputto, R. A soluble preparation from rat brain that incorporates into its own proteins (14 C)arginine by a ribonuclease-sensitive system and (14 C)tyrosine by a ribonuclease-insensitive system. J. Neurochem. 20, 97–108 (1973).

    Article  CAS  Google Scholar 

  20. Arce, C.A., Rodriguez, J.A., Barra, H.S. & Caputo, R. Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. Eur. J. Biochem. 59, 145–149 (1975).

    Article  CAS  Google Scholar 

  21. Wloga, D. & Gaertig, J. Post-translational modifications of microtubules. J. Cell Sci. 123, 3447–3455 (2010).

    Article  CAS  Google Scholar 

  22. Raybin, D. & Flavin, M. Enzyme which specifically adds tyrosine to the α chain of tubulin. Biochemistry 16, 2189–2194 (1977).

    Article  CAS  Google Scholar 

  23. Murofushi, H. Purification and characterization of tubulin-tyrosine ligase from porcine brain. J. Biochem. 87, 979–984 (1980).

    Article  CAS  Google Scholar 

  24. Schröder, H.C., Wehland, J. & Weber, K. Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods. J. Cell Biol. 100, 276–281 (1985).

    Article  Google Scholar 

  25. Russell, D.G., Miller, D. & Gull, K. Tubulin heterogeneity in the trypanosome Crithidia fasciculata. Mol. Cell. Biol. 4, 779–790 (1984).

    Article  CAS  Google Scholar 

  26. Warn, R.M., Harrison, A., Planques, V., Robert-Nicoud, N. & Wehland, J. Distribution of microtubules containing post-translationally modified α-tubulin during Drosophila embryogenesis. Cell Motil. Cytoskeleton 17, 34–45 (1990).

    Article  CAS  Google Scholar 

  27. Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4, 938–947 (2003).

    Article  CAS  Google Scholar 

  28. Ersfeld, K. et al. Characterization of the tubulin-tyrosine ligase. J. Cell Biol. 120, 725–732 (1993).

    Article  CAS  Google Scholar 

  29. Janke, C. et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758–1762 (2005).

    Article  CAS  Google Scholar 

  30. van Dijk, J. et al. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26, 437–448 (2007).

    Article  CAS  Google Scholar 

  31. Ikegami, K. et al. TTLL10 is a protein polyglycylase that can modify nucleosome assembly protein 1. FEBS Lett. 582, 1129–1134 (2008).

    Article  CAS  Google Scholar 

  32. Rogowski, K. et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076–1087 (2009).

    Article  CAS  Google Scholar 

  33. Wloga, D. et al. TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell 16, 867–876 (2009).

    Article  CAS  Google Scholar 

  34. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  35. Fan, C., Moews, P.C., Shi, Y., Walsh, C.T. & Knox, J.R. A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:D-alanine ligase of Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 1172–1176 (1995).

    Article  CAS  Google Scholar 

  36. Galperin, M.Y. & Koonin, E.V. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci. 6, 2639–2643 (1997).

    Article  CAS  Google Scholar 

  37. Fan, C., Moews, P.C., Walsh, C.T. & Knox, J.R. Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2.3 Å resolution. Science 266, 439–443 (1994).

    Article  CAS  Google Scholar 

  38. Hara, T., Kato, H., Katsube, Y. & Oda, J. A pseudo-michaelis quaternary complex in the reverse reaction of a ligase: structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 Å resolution. Biochemistry 35, 11967–11974 (1996).

    Article  CAS  Google Scholar 

  39. Esser, L. et al. Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J. 17, 977–984 (1998).

    Article  CAS  Google Scholar 

  40. Sakai, H. et al. Crystal structure of a lysine biosynthesis enzyme, LysX, from Thermus thermophilus HB8. J. Mol. Biol. 332, 729–740 (2003).

    Article  CAS  Google Scholar 

  41. Wehland, J., Schröder, H.C. & Weber, K. Isolation and purification of tubulin tyrosine ligase. Methods Enzymol. 134, 170–179 (1986).

    Article  CAS  Google Scholar 

  42. Rüdiger, M., Wehland, J. & Weber, K. The carboxy-terminal peptide of detyrosinated α tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. Eur. J. Biochem. 220, 309–320 (1994).

    Article  Google Scholar 

  43. Raybin, D. & Flavin, M. An enzyme tyrosylating α-tubulin and its role in microtubule assembly. Biochem. Biophys. Res. Commun. 65, 1088–1095 (1975).

    Article  CAS  Google Scholar 

  44. Löwe, J., Li, H., Downing, K.H. & Nogales, E. Refined structure of α β-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  Google Scholar 

  45. Pal, D. et al. Conformational properties of α-tubulin tail peptide: implications for tail-body interaction. Biochemistry 40, 15512–15519 (2001).

    Article  CAS  Google Scholar 

  46. Wehland, J. & Weber, K. Tubulin-tyrosine ligase has a binding site on β-tubulin: a two-domain structure of the enzyme. J. Cell Biol. 104, 1059–1067 (1987).

    Article  CAS  Google Scholar 

  47. Deans, N.L., Allison, R.D. & Purich, D.L. Steady-state kinetic mechanism of bovine brain tubulin: tyrosine ligase. Biochem. J. 286, 243–251 (1992).

    Article  CAS  Google Scholar 

  48. Matov, A. et al. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat. Methods 7, 761–768 (2010).

    Article  CAS  Google Scholar 

  49. Ravelli, R.B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).

    Article  CAS  Google Scholar 

  50. Cormier, A. et al. The PN2–3 domain of centrosomal P4.1-associated protein implements a novel mechanism for tubulin sequestration. J. Biol. Chem. 284, 6909–6917 (2009).

    Article  CAS  Google Scholar 

  51. Hiller, G. & Weber, K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14, 795–804 (1978).

    Article  CAS  Google Scholar 

  52. Kato, C. et al. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int. J. Cancer 112, 365–375 (2004).

    Article  CAS  Google Scholar 

  53. Deanin, G.G. & Gordon, M.W. The distribution of tyrosyltubulin ligase in brain and other tissues. Biochem. Biophys. Res. Commun. 71, 676–683 (1976).

    Article  CAS  Google Scholar 

  54. Deprez, C. et al. Solution structure of the E. coli TolA C-terminal domain reveals conformational changes upon binding to the phage g3p N-terminal domain. J. Mol. Biol. 346, 1047–1057 (2005).

    Article  CAS  Google Scholar 

  55. Rocchia, W. et al. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J. Comput. Chem. 23, 128–137 (2002).

    Article  CAS  Google Scholar 

  56. Schuck, P. Diffusion-deconvoluted sedimentation coefficient distributions for the analysis of interacting and non-interacting protein mixtures. in Analytical Centrifugation (eds. Scott, D.J., Harding, S.E & Rowe, A.J.) 26–50 (The Royal Society of Chemistry, Cambridge, 2005).

  57. Svergun, D.I., Petoukhov, M.V. & Koch, M.H. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  Google Scholar 

  58. Lebowitz, J., Lewis, M.S. & Schuck, P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079 (2002).

    Article  CAS  Google Scholar 

  59. Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  60. Pettersen, E.F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Ralston for access to beamlines at the Advanced Light Source (Lawrence Berkeley Laboratories), L. Kizub for assistance with molecular biology, protein expression and purification, S. Abrams (US National Institutes of Health, NIH) for making the X. tropicalis TTL and GFP-TTL clones, early imaging efforts and the initial observation with W. Shin that TTL expression affects microtubule growth rates, W. Shin for microscopy help, R. Sunyer for early live cell imaging and running the tip tracking program setup with help from Y. Nishimura and K. Myers, and C. Waterman (NIH) for mKusabira Orange-EB3 U2OS cells. We are grateful to N. Tjandra for temporary space while our laboratory was under renovation, C. Waterman for access to microscopes and her lab's expertise, R. Levine and D.-Y. Lee for mass spectrometry analyses and access to their HPLC and S. Buchanan for crystallization incubator space. A.R.-M. thanks H. Bourne, A. Ferré-D'Amaré, S. Gottesman, E.D. Korn, N. Tjandra and C. Waterman for support and critical reading of the manuscript. The authors thank the reviewers for their helpful comments regarding the TTL effects on microtubule dynamics. A.R.-M. is a Searle Scholar and is supported by the intramural program of the National Institute of Neurological Disorders and Stroke (NINDS)/NIH.

Author information

Authors and Affiliations

Authors

Contributions

A.S. purified TTL and TTL mutants, obtained TTL crystals, carried out tyrosination and gel filtration assays and wrote the corresponding methods; A.M.D. processed SAXS data, obtained the reconstructions and wrote the corresponding methods; G.P. carried out and analyzed all analytical ultracentrifugation experiments and wrote the corresponding methods; A.R.-M. grew and flash-froze crystals, collected X-ray data, solved and refined the crystal structures, carried out in vitro polymerization assays and live cell imaging, and analyzed microtubule dynamics data. A.R.-M. conceived the project and planned experiments in consultation with all authors. All authors prepared figures and A.R.-M. wrote the manuscript, which was reviewed by all authors.

Corresponding author

Correspondence to Antonina Roll-Mecak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 9874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyk, A., Deaconescu, A., Piszczek, G. et al. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat Struct Mol Biol 18, 1250–1258 (2011). https://doi.org/10.1038/nsmb.2148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing