Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of tRNA agmatinylation essential for AUA codon decoding

This article has been updated

Abstract

The cytidine at the first position of the anticodon (C34) in the AUA codon-specific archaeal tRNAIle2 is modified to 2-agmatinylcytidine (agm2C or agmatidine), an agmatine-conjugated cytidine derivative, which is crucial for the precise decoding of the genetic code. Agm2C is synthesized by tRNAIle-agm2C synthetase (TiaS) in an ATP-dependent manner. Here we present the crystal structures of the Archaeoglobus fulgidus TiaS–tRNAIle2 complexed with ATP, or with AMPCPP and agmatine, revealing a previously unknown kinase module required for activating C34 by phosphorylation, and showing the molecular mechanism by which TiaS discriminates between tRNAIle2 and tRNAMet. In the TiaS–tRNAIle2–ATP complex, C34 is trapped within a pocket far away from the ATP-binding site. In the agmatine-containing crystals, C34 is located near the AMPCPP γ-phosphate in the kinase module, demonstrating that agmatine is essential for placing C34 in the active site. These observations also provide the structural dynamics for agm2C formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the TiaS–tRNAIle2–ATP ternary complex.
Figure 2: tRNAIle2 recognition in the ternary complex.
Figure 3: Structural dynamics of the TiaS–tRNAIle2 complex.
Figure 4: Proposed model for agm2C formation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 23 October 2011

    In the version of this article initially published online, the last sentence of the abstract was misleading. The error has been corrected for the print, PDF and HTML versions of the article.

References

  1. Björk, G.R. Biosynthesis and function of modified nucleosides. in tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.L.) 165–205 (American Society for Microbiology, Washington, DC, 1995).

  2. Yokoyama, S. & Nishimura, S. Modified nucleosides and codon recognition. in tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.L.) 207–224 (American Society for Microbiology, Washington, DC, 1995).

  3. Suzuki, T. Biosynthesis and function of tRNA wobble modifications. in Topics in Current Genetics: Fine-Tuning of RNA Functions by Modification and Editing (ed. Grosjean, H.) 24–69 (Springer, New York, 2005).

    Chapter  Google Scholar 

  4. Muramatsu, T. et al. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336, 179–181 (1988).

    Article  CAS  Google Scholar 

  5. Sylvers, L.A., Rogers, K.C., Shimizu, M., Ohtsuka, E. & Söll, D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32, 3836–3841 (1993).

    Article  CAS  Google Scholar 

  6. Senger, B., Auxilien, S., Englisch, U., Cramer, F. & Fasiolo, F. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase. Biochemistry 36, 8269–8275 (1997).

    Article  CAS  Google Scholar 

  7. Ikeuchi, Y. et al. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat. Chem. Biol. 6, 277–282 (2010).

    Article  CAS  Google Scholar 

  8. Mandal, D. et al. Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine. Proc. Natl. Acad. Sci. USA 107, 2872–2877 (2010).

    Article  CAS  Google Scholar 

  9. Köhrer, C. et al. Identification and characterization of a tRNA decoding the rare AUA codon in Haloarcula marismortui. RNA 14, 117–126 (2008).

    Article  Google Scholar 

  10. Muramatsu, T. et al. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263, 9261–9267 (1988).

    CAS  Google Scholar 

  11. Terasaka, N., Kimura, S., Osawa, T., Numata, T. & Suzuki, T. Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS. Nat. Struct. Mol. Biol. 18, doi:10.1038/nsmb.2121 (published online 16 October 2011).

  12. Soma, A. et al. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol. Cell 12, 689–698 (2003).

    Article  CAS  Google Scholar 

  13. Ikeuchi, Y. et al. Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition. Mol. Cell 19, 235–246 (2005).

    Article  CAS  Google Scholar 

  14. Nakanishi, K. et al. Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Proc. Natl. Acad. Sci. USA 102, 7487–7492 (2005).

    Article  CAS  Google Scholar 

  15. Nakanishi, K. et al. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nature 461, 1144–1148 (2009).

    Article  CAS  Google Scholar 

  16. Kuratani, M. et al. Structural basis of the initial binding of tRNAIle lysidine synthetase TilS with ATP and L-lysine. Structure 15, 1642–1653 (2007).

    Article  CAS  Google Scholar 

  17. Suzuki, T. & Miyauchi, K. Discovery and characterization of tRNAIle lysidine synthetase (TilS). FEBS Lett. 584, 272–277 (2010).

    Article  CAS  Google Scholar 

  18. Bork, P. & Koonin, E.V. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. Proteins 20, 347–355 (1994).

    Article  CAS  Google Scholar 

  19. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  20. Schmitt, E. et al. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 17, 5227–5237 (1998).

    Article  CAS  Google Scholar 

  21. Krishna, S.S., Majumdar, I. & Grishin, N.V. Structural classification of zinc fingers. Nucleic Acids Res. 31, 532–550 (2003).

    Article  CAS  Google Scholar 

  22. Shi, H. & Moore, P.B. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6, 1091–1105 (2000).

    Article  CAS  Google Scholar 

  23. Cusack, S., Yaremchuk, A., Krikliviy, I. & Tukalo, M. tRNAPro anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6, 101–108 (1998).

    Article  CAS  Google Scholar 

  24. Silvian, L.F., Wang, J. & Steitz, T.A. Insights into editing from an Ile-tRNA synthetase structure with tRNAIle and mupirocin. Science 285, 1074–1077 (1999).

    Article  CAS  Google Scholar 

  25. Eiler, S., Dock-Bregeon, A., Moulinier, L., Thierry, J.C. & Moras, D. Synthesis of aspartyl-tRNAAsp in Escherichia coli–a snapshot of the second step. EMBO J. 18, 6532–6541 (1999).

    Article  CAS  Google Scholar 

  26. Fukai, S. et al. Mechanism of molecular interactions for tRNAVal recognition by valyl-tRNA synthetase. RNA 9, 100–111 (2003).

    Article  CAS  Google Scholar 

  27. Nakanishi, K., Ogiso, Y., Nakama, T., Fukai, S. & Nureki, O. Structural basis for anticodon recognition by methionyl-tRNA synthetase. Nat. Struct. Mol. Biol. 12, 931–932 (2005).

    Article  CAS  Google Scholar 

  28. Hoang, C. & Ferre-D'Amare, A.R. Cocrystal structure of a tRNA Ψ55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Article  CAS  Google Scholar 

  29. Lee, T.T., Agarwalla, S. & Stroud, R.M. A unique RNA fold in the RumA–RNA–cofactor ternary complex contributes to substrate selectivity and enzymatic function. Cell 120, 599–611 (2005).

    Article  CAS  Google Scholar 

  30. Numata, T., Ikeuchi, Y., Fukai, S., Suzuki, T. & Nureki, O. Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442, 419–424 (2006).

    Article  CAS  Google Scholar 

  31. Fukuda, W., Morimoto, N., Imanaka, T. & Fujiwara, S. Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol. Lett. 287, 113–120 (2008).

    Article  CAS  Google Scholar 

  32. Morimoto, N. et al. Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J. Bacteriol. 192, 4991–5001 (2010).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Weeks, C.M. & Miller, R. The design and implementation of SnB version 2.0. J. Appl. Crystallogr. 32, 120–124 (1999).

    Article  CAS  Google Scholar 

  35. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  36. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  38. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  40. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Tomita, K. Ito and S. Fukai for valuable and critical comments and suggestions for this manuscript. We thank the beamline staff at BL-17A of the Photon Factory for technical assistance during data collection. This work was supported by a Precursory Research for Embryonic Science and Technology (PRESTO) Program grant from the Japan Science and Technology Agency (JST) (to T.N.); by a Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (JSPS) (to T.N.); by a Grant-in-Aid for JSPS Fellows (to T.O. and S.K.); by grants from the Kurata Memorial Hitachi Science and Technology Foundation, the Nakajima Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Sankyo Foundation of Life Science and the Noda Institute for Scientific Research (to T.N.); by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T.S.); and by a grant from the New Energy and Industrial Technology Development Organization (NEDO) (to T.S.).

Author information

Authors and Affiliations

Authors

Contributions

H.I. and T.N. prepared the tRNAIle2 for crystallography. H.I. constructed the protein expression system. T.O. carried out the protein purification, crystallization and structure determination. T.N. assisted with the structure determination. T.O. and H.I. prepared the TiaS mutants. S.K. and N.T. prepared the tRNA mutants. S.K. and N.T. conducted the biochemical analyses under the supervision of T.S., and T.O. and T.N. wrote the paper. All authors discussed the results and commented on the manuscript. T.N. supervised the work.

Corresponding author

Correspondence to Tomoyuki Numata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2, Supplementary Methods and Supplementary Discussion (PDF 5053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osawa, T., Kimura, S., Terasaka, N. et al. Structural basis of tRNA agmatinylation essential for AUA codon decoding. Nat Struct Mol Biol 18, 1275–1280 (2011). https://doi.org/10.1038/nsmb.2144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing