Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and nucleosome interaction of the yeast NuA4 and Piccolo–NuA4 histone acetyltransferase complexes

Abstract

We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4–NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo–NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4–NCP interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NuA4 subunit organization and EM characterization.
Figure 2: NuA4 subunit organization, interaction with the nucleosome and structural homology with SAGA.
Figure 3: Characterization of the Piccolo–nucleosome core particle complex by analytical ultracentrifugation and EM.
Figure 4: Epl1 N terminus drives binding to nucleosomes within NuA4, but Yng2 is required for acetylation.
Figure 5: Epl1 residues 51–72 are essential for the Piccolo-NCP interaction.

Similar content being viewed by others

References

  1. Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108–5119 (1999).

    Article  CAS  Google Scholar 

  2. Clarke, A.S., Lowell, J.E., Jacobson, S.J. & Pillus, L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol. 19, 2515–2526 (1999).

    Article  CAS  Google Scholar 

  3. Selleck, W., Fortin, I., Sermwittayawong, D., Cote, J. & Tan, S. The Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex requires the enhancer of Polycomb A domain and chromodomain to acetylate nucleosomes. Mol. Cell. Biol. 25, 5535–5542 (2005).

    Article  CAS  Google Scholar 

  4. Boudreault, A.A. et al. Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev. 17, 1415–1428 (2003).

    Article  CAS  Google Scholar 

  5. Avvakumov, N. & Cote, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395–5407 (2007).

    Article  CAS  Google Scholar 

  6. Fazzio, T.G., Huff, J.T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008).

    Article  CAS  Google Scholar 

  7. Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313–324 (2010).

    Article  CAS  Google Scholar 

  8. Sapountzi, V. & Cote, J. MYST-family histone acetyltransferases: beyond chromatin. Cell. Mol. Life Sci. 68, 1147–1156 (2011).

    Article  CAS  Google Scholar 

  9. Doyon, Y. & Cote, J. The highly conserved and multifunctional NuA4 HAT complex. Curr. Opin. Genet. Dev. 14, 147–154 (2004).

    Article  CAS  Google Scholar 

  10. Auger, A. et al. Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants. Mol. Cell. Biol. 28, 2257–2270 (2008).

    Article  CAS  Google Scholar 

  11. Brown, C.E. et al. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292, 2333–2337 (2001).

    Article  CAS  Google Scholar 

  12. Downs, J.A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004).

    Article  CAS  Google Scholar 

  13. Altaf, M., Auger, A., Covic, M. & Cote, J. Connection between histone H2A variants and chromatin remodeling complexes. Biochem. Cell Biol. 87, 35–50 (2009).

    Article  CAS  Google Scholar 

  14. Mitchell, L. et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol. Cell. Biol. 28, 2244–2256 (2008).

    Article  CAS  Google Scholar 

  15. Ginsburg, D.S., Govind, C.K. & Hinnebusch, A.G. NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5. Mol. Cell. Biol. 29, 6473–6487 (2009).

    Article  CAS  Google Scholar 

  16. Carey, M., Li, B. & Workman, J.L. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol. Cell 24, 481–487 (2006).

    Article  CAS  Google Scholar 

  17. Altaf, M. et al. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J. Biol. Chem. 285, 15966–15977 (2010).

    Article  CAS  Google Scholar 

  18. Grant, P.A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).

    Article  CAS  Google Scholar 

  19. Robert, F. et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol. Cell 16, 199–209 (2004).

    Article  CAS  Google Scholar 

  20. Pascual-Garcíia, P. et al. Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2. Genes Dev. 22, 2811–2822 (2008).

    Article  Google Scholar 

  21. Govind, C.K., Zhang, F., Qiu, H., Hofmeyer, K. & Hinnebusch, A.G. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol. Cell 25, 31–42 (2007).

    Article  CAS  Google Scholar 

  22. Hassan, A.H., Neely, K.E. & Workman, J.L. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    Article  CAS  Google Scholar 

  23. Hassan, A.H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  Google Scholar 

  24. Yan, Y., Barlev, N.A., Haley, R.H., Berger, S.L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).

    Article  CAS  Google Scholar 

  25. Wang, A.Y. et al. Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation. Proc. Natl. Acad. Sci. USA 106, 21573–21578 (2009).

    Article  CAS  Google Scholar 

  26. Sun, B. et al. Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J. Biol. Chem. 283, 36504–36512 (2008).

    Article  CAS  Google Scholar 

  27. Xu, C., Cui, G., Botuyan, M.V. & Mer, G. Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16, 1740–1750 (2008).

    Article  CAS  Google Scholar 

  28. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  Google Scholar 

  29. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  30. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  31. Saxton, W.O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127, 127–138 (1982).

    Article  CAS  Google Scholar 

  32. Knutson, B.A. & Hahn, S. Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol. Cell. Biol. 31, 818–831 (2011).

    Article  CAS  Google Scholar 

  33. Wu, P.Y., Ruhlmann, C., Winston, F. & Schultz, P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 15, 199–208 (2004).

    Article  CAS  Google Scholar 

  34. Ackerson, C.J., Jadzinsky, P.D., Sexton, J.Z., Bushnell, D.A. & Kornberg, R.D. Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. Bioconjug. Chem. 21, 214–218 (2010).

    Article  CAS  Google Scholar 

  35. Ackerson, C.J., Jadzinsky, P.D., Jensen, G.J. & Kornberg, R.D. Rigid, specific, and discrete gold nanoparticle/antibody conjugates. J. Am. Chem. Soc. 128, 2635–2640 (2006).

    Article  CAS  Google Scholar 

  36. Flaus, A. & Richmond, T.J. Positioning and stability of nucleosomes on MMTV 3′LTR sequences. J. Mol. Biol. 275, 427–441 (1998).

    Article  CAS  Google Scholar 

  37. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  38. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  Google Scholar 

  39. Berndsen, C.E. et al. Nucleosome recognition by the Piccolo NuA4 histone acetyltransferase complex. Biochemistry 46, 2091–2099 (2007).

    Article  CAS  Google Scholar 

  40. Stankunas, K. et al. The enhancer of polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development 125, 4055–4066 (1998).

    CAS  PubMed  Google Scholar 

  41. Nourani, A. et al. Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex. Mol. Cell. Biol. 21, 7629–7640 (2001).

    Article  CAS  Google Scholar 

  42. Chaban, Y. et al. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat. Struct. Mol. Biol. 15, 1272–1277 (2008).

    Article  CAS  Google Scholar 

  43. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  Google Scholar 

  44. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  45. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    Article  CAS  Google Scholar 

  46. Frank, J. Classification of macromolecular assemblies studied as 'single particles'. Q. Rev. Biophys. 23, 281–329 (1990).

    Article  CAS  Google Scholar 

  47. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  48. Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  Google Scholar 

  49. Daugherty, M.A. & Fried, M.G. Analysis of transcription factor interactions at sedimentation equilibrium. Methods Enzymol. 370, 349–369 (2003).

    Article  CAS  Google Scholar 

  50. Cote, J., Utley, R.T. & Workman, J.L. Basic analysis of transcription factor binding to nucleosomes. Methods Mol. Genet. 6, 108–128 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01 GM67167 (F.J.A.), R01 GM060489 (S.T.) and R01 GM070662 (M.G.F.), and fellowship F31 GM086978 (J.R.C.), by a Canadian Institutes of Health Research grant MOP-14308 (J.C.) and fellowship (V.S.), and by a Canada Research Chair (J.C.). We also acknowledge the National Resource for Automated Macromolecular Microscopy.

Author information

Authors and Affiliations

Authors

Contributions

M.J.C. and J.M.-S. expressed and purified NuA4 for EM analysis; J.M.-S. expressed and purified the SAGA complex; J.M.-S., R.T.U., V.S., M.C. and S.A. expressed and purified NuA4 and recombinant component subunits for biochemical analysis and performed all biochemical analyses of NuA4 and component subunits; W.S. produced the recombinant NCP; W.S. and J.H. expressed and purified all Piccolo–NuA4 variants and Piccolo–NuA4 in complex with the NCP; M.G.F. performed all analytical ultracentrifugation experiments; Y.C. collected EM data for NuA4 preserved in ice and calculated the RCT 3D reconstruction of NuA4 from stained particles; J.R.C. collected and analyzed all additional EM data and calculated all remaining structures for Piccolo–NuA4 and NuA4; G.C. performed initial quality inspection of 3D NuA4 structures with J.R.C. and F.J.A.; J.R.C., F.J.A., S.T. and J.C. discussed and interpreted all results; F.J.A. supervised all EM-based structural analysis; J.R.C. and F.J.A. wrote the manuscript with input from J.C. and S.T.

Corresponding authors

Correspondence to Jacques Côté or Francisco J Asturias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittuluru, J., Chaban, Y., Monnet-Saksouk, J. et al. Structure and nucleosome interaction of the yeast NuA4 and Piccolo–NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol 18, 1196–1203 (2011). https://doi.org/10.1038/nsmb.2128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing