Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Rad50 coiled-coil domain is indispensable for Mre11 complex functions

Abstract

The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils. These mutations abolished telomere maintenance and meiotic double-strand break (DSB) formation, and severely impaired homologous recombination, indicating a requirement for long-range action. Nonhomologous end joining, which is probably mediated by the globular domain of the Mre11 complex, was also severely impaired by alteration of the coiled-coil and hook domains, providing the first evidence of their influence on this process. These data show that functions of Mre11 complex are integrated by the coiled coils of Rad50.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rad50 coiled-coil mutants.
Figure 2: Mre11 complex integrity and DNA association are intact without the hook and most of the coiled coil.
Figure 3: rad50 hook and coiled-coil mutants are defective in meiotic DSB formation and telomere maintenance.
Figure 4: The Rad50 hook and coiled-coil domains are required for cell survival in the presence of MMS.
Figure 5: SCR is promoted by the Rad50 hook and coiled-coil domain.
Figure 6: NHEJ in rad50coils.
Figure 7: Distal domain alterations and potential effects on the globular domain.

Similar content being viewed by others

References

  1. Stracker, T.H. & Petrini, J.H. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Williams, R.S., Williams, J.S. & Tainer, J.A. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem. Cell Biol. 85, 509–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Paull, T.T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bressan, D.A., Olivares, H.A., Nelms, B.E. & Petrini, J.H. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150, 591–600 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bressan, D.A., Baxter, B.K. & Petrini, J.H. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7681–7687 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moreau, S., Ferguson, J.R. & Symington, L.S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. González-Barrera, S., Cortes-Ledesma, F., Wellinger, R.E. & Aguilera, A. Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol. Cell 11, 1661–1671 (2003).

    Article  PubMed  Google Scholar 

  8. Hopfner, K.P. et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418, 562–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hopfner, K.P., Putnam, C.D. & Tainer, J.A. DNA double-strand break repair from head to tail. Curr. Opin. Struct. Biol. 12, 115–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wiltzius, J.J., Hohl, M., Fleming, J.C. & Petrini, J.H. The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat. Struct. Mol. Biol. 12, 403–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Williams, G.J., Lees-Miller, S.P. & Tainer, J.A. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst.) 9, 1299–1306 (2010).

    Article  CAS  Google Scholar 

  12. Williams, R.S. et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135, 97–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Jager, M. et al. Differential arrangements of conserved building blocks among homologs of the Rad50/Mre11 DNA repair protein complex. J. Mol. Biol. 339, 937–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Moreno-Herrero, F. et al. Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437, 440–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, L., Trujillo, K., Ramos, W., Sung, P. & Tomkinson, A.E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell 8, 1105–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Trujillo, K.M. et al. Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J. Biol. Chem. 278, 48957–48964 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, L. et al. Effect of amino acid substitutions in the rad50 ATP binding domain on DNA double strand break repair in yeast. J. Biol. Chem. 280, 2620–2627 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Costanzo, V., Paull, T., Gottesman, M. & Gautier, J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol. 2, E110 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  20. van der Linden, E., Sanchez, H., Kinoshita, E., Kanaar, R. & Wyman, C. RAD50 and NBS1 form a stable complex functional in DNA binding and tethering. Nucleic Acids Res. 37, 1580–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Noort, J. et al. The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility. Proc. Natl. Acad. Sci. USA 100, 7581–7586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uhlmann, F., Wernic, D., Poupart, M.A., Koonin, E.V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, D.E., Trujillo, K.M., Sung, P. & Erickson, H.P. Structure of the Rad50 x Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J. Biol. Chem. 276, 37027–37033 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hopfner, K.P. et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, G.J. et al. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18, 423–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lammens, K. et al. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break Repair. Cell 145, 54–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, H.S., Kim, J.S., Park, Y.B., Gwon, G.H. & Cho, Y. Crystal structure of the Mre11-Rad50-ATP{gamma}S complex: understanding the interplay between Mre11 and Rad50. Genes Dev. 25, 1091–1104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hopfner, K.P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Keeney, S. & Kleckner, N. Covalent protein-DNA complexes at the 5′ strand termini of meiosis-specific double-strand breaks in yeast. Proc. Natl. Acad. Sci. USA 92, 11274–11278 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kadyk, L.C. & Hartwell, L.H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387–402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cortés-Ledesma, F. & Aguilera, A. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep. 7, 919–926 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ajimura, M., Leem, S.H. & Ogawa, H. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133, 51–66 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, K.N. & Symington, L.S. Mutation of the gene encoding protein kinase C 1 stimulates mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 6039–6045 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mozlin, A.M., Fung, C.W. & Symington, L.S. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Genetics 178, 113–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moore, J.K. & Haber, J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent nonhomologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lamarche, B.J., Orazio, N.I. & Weitzman, M.D. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 584, 3682–3695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tseng, S.F., Gabriel, A. & Teng, S.C. Proofreading activity of DNA polymerase Pol2 mediates 3′-end processing during nonhomologous end joining in yeast. PLoS Genet. 4, e1000060 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hochwagen, A., Tham, W.H., Brar, G.A. & Amon, A. The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122, 861–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. McVey, M. & Lee, S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24, 529–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palmbos, P.L., Daley, J.M. & Wilson, T.E. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol. Cell. Biol. 25, 10782–10790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuzaki, K., Shinohara, A. & Shinohara, M. Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, Lif1. Genetics 179, 213–225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Makarova, O., Kamberov, E. & Margolis, B. Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Schiestl, R.H. & Gietz, R.D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, H.S. et al. Functional interactions between Sae2 and the Mre11 complex. Genetics 178, 711–723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Usui, T., Ogawa, H. & Petrini, J.H. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell. 7, 1255–1266 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Trujillo, K.M. & Sung, P. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50–Mre11 complex. J. Biol. Chem. 276, 35458–35464 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Furuse, M. et al. Distinct roles of two separable in vitro activities of yeast mre11 in mitotic and meiotic recombination. EMBO J. 17, 6412–6425 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murakami, H., Borde, V., Nicolas, A. & Keeney, S. Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Methods Mol. Biol. 557, 117–142 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chan, S.W., Chang, J., Prescott, J. & Blackburn, E.H. Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr. Biol. 11, 1240–1250 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Sugawara, N. & Haber, J.E. Repair of DNA double strand breaks: in vivo biochemistry. Methods Enzymol. 408, 416–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bryant, G.O. et al. Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol. 6, 2928–2939 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Shim, E.Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27, 1602–1613 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Haber (Brandeis University), F. Uhlmann (London Research Institute), L. Symington (Columbia University), S. Keeney (Memorial Sloan- Kettering Cancer Center), A. Amon (Massachusetts Institute of Technology) and T. Wilson (University of Michigan) for yeast strains, reagents and technical support, to K.-P. Hopfner for structural advice, to G. Bryant and D. Spagna for help with the qPCR, and to current and former members of the Petrini laboratory for insightful comments. We thank S. Keeney for critical reading of the manuscript. This work was supported by GM56888 (J.H.J.P.), PBZH33-112756 and PA0033-117484 from the Swiss National Science Foundation and the Eugen and Elisabeth Schellenberg Foundation (M.H.), BFU2006-05260 and Consolider Ingenio 2010 CSD2007-015 from the Spanish Ministry of Science and Innovation (A.A.) and ES07061 (P.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.H., Y.K., X.X., S.M.G. and C.T. carried out experiments. J.H.J.P. designed research in consultation with P.S. and A.A. J.H.J.P. and M.H. wrote the manuscript.

Corresponding author

Correspondence to John H J Petrini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 3396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohl, M., Kwon, Y., Galván, S. et al. The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nat Struct Mol Biol 18, 1124–1131 (2011). https://doi.org/10.1038/nsmb.2116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing