Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation

Abstract

DNA recombination pathways are regulated by the cell cycle to coordinate with replication. Cyclin-dependent kinase (Cdk1) promotes efficient 5′ strand resection at DNA double-strand breaks (DSBs), the initial step of homologous recombination and damage checkpoint activation. The Mre11–Rad50–Xrs2 complex with Sae2 initiates resection, whereas two nucleases, Exo1 and Dna2, and the DNA helicase–topoisomerase complex Sgs1–Top3–Rmi1 generate longer ssDNA at DSBs. Using Saccharomyces cerevisiae, we provide evidence for Cdk1-dependent phosphorylation of the resection nuclease Dna2 at Thr4, Ser17 and Ser237 that stimulates its recruitment to DSBs, resection and subsequent Mec1-dependent phosphorylation. Poorly recruited dna2T4A S17A S237A and dna2ΔN248 mutant proteins promote resection only in the presence of Exo1, suggesting cross-talk between Dna2- and Exo1-dependent resection pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdk1 regulates long-range double-strand break resection by Dna2.
Figure 2: Dna2 is phosphorylated by Cdk1 and Mec1.
Figure 3: Dna2 phosphorylation by Cdk1 stimulates resection.
Figure 4: Dna2 phosphorylation by Cdk1 is needed for its recruitment to double-strand breaks.

Similar content being viewed by others

References

  1. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  2. Enserink, J.M. & Kolodner, R.D. An overview of Cdk1-controlled targets and processes. Cell Div. 5, 11 (2010).

    Article  Google Scholar 

  3. Saponaro, M. et al. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet. 6, e1000858 (2010).

    Article  Google Scholar 

  4. Caspari, T., Murray, J.M. & Carr, A.M. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16, 1195–1208 (2002).

    Article  CAS  Google Scholar 

  5. Granata, M. et al. Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet. 6, pii: e1001047 (2010).

  6. Diani, L. et al. Saccharomyces CDK1 phosphorylates Rad53 kinase in metaphase, influencing cellular morphogenesis. J. Biol. Chem. 284, 32627–32634 (2009).

    Article  CAS  Google Scholar 

  7. Schleker, T., Shimada, K., Sack, R., Pike, B.L. & Gasser, S.M. Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation. Cell Cycle 9, 350–363 (2010).

    Article  CAS  Google Scholar 

  8. Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    Article  CAS  Google Scholar 

  9. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).

    Article  CAS  Google Scholar 

  10. Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1017 (2004).

    Article  CAS  Google Scholar 

  11. Ferreira, M.G. & Cooper, J.P. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev. 18, 2249–2254 (2004).

    Article  CAS  Google Scholar 

  12. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  Google Scholar 

  13. Barlow, J.H., Lisby, M. & Rothstein, R. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell 30, 73–85 (2008).

    Article  CAS  Google Scholar 

  14. Janke, R. et al. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res. 38, 2302–2313 (2010).

    Article  CAS  Google Scholar 

  15. Huertas, P., Cortes-Ledesma, F., Sartori, A.A., Aguilera, A. & Jackson, S.P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692 (2008).

    Article  CAS  Google Scholar 

  16. Huertas, P. & Jackson, S.P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    Article  CAS  Google Scholar 

  17. Yun, M.H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    Article  CAS  Google Scholar 

  18. Limbo, O. et al. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol. Cell 28, 134–146 (2007).

    Article  CAS  Google Scholar 

  19. Bonetti, D., Martina, M., Clerici, M., Lucchini, G. & Longhese, M.P. Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol. Cell 35, 70–81 (2009).

    Article  CAS  Google Scholar 

  20. Clerici, M., Mantiero, D., Guerini, I., Lucchini, G. & Longhese, M.P. The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep. 9, 810–818 (2008).

    Article  CAS  Google Scholar 

  21. Zhang, Y. et al. Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination. Nat. Struct. Mol. Biol. 14, 639–646 (2007).

    Article  CAS  Google Scholar 

  22. Zierhut, C. & Diffley, J.F. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27, 1875–1885 (2008).

    Article  CAS  Google Scholar 

  23. Cejka, P. et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467, 112–116 (2010).

    Article  CAS  Google Scholar 

  24. Niu, H. et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467, 108–111 (2010).

    Article  CAS  Google Scholar 

  25. Nicolette, M.L. et al. Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 17, 1478–1485 (2010).

    Article  CAS  Google Scholar 

  26. Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases dna2 and exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  Google Scholar 

  27. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  28. Budd, M.E., Reis, C.C., Smith, S., Myung, K. & Campbell, J.L. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell Biol. 26, 2490–2500 (2006).

    Article  CAS  Google Scholar 

  29. Mimitou, E.P. & Symington, L.S. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J. 29, 3358–3369 (2010).

    Article  CAS  Google Scholar 

  30. Shim, E.Y. et al. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J. 29, 3370–3380 (2010).

    Article  CAS  Google Scholar 

  31. Ubersax, J.A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  Google Scholar 

  32. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA 106, 10171–10176 (2009).

    Article  CAS  Google Scholar 

  33. Din, S., Brill, S.J., Fairman, M.P. & Stillman, B. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4, 968–977 (1990).

    Article  CAS  Google Scholar 

  34. Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  Google Scholar 

  35. Gravel, S., Chapman, J.R., Magill, C. & Jackson, S.P. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22, 2767–2772 (2008).

    Article  CAS  Google Scholar 

  36. Nimonkar, A.V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011).

    Article  CAS  Google Scholar 

  37. Hodgson, A. et al. Mre11 and Exo1 contribute to the initiation and processivity of resection at meiotic double-strand breaks made independently of Spo11. DNA Repair (Amst.) 10, 138–148 (2011).

    Article  CAS  Google Scholar 

  38. Keelagher, R.E., Cotton, V.E., Goldman, A.S. & Borts, R.H. Separable roles for Exonuclease I in meiotic DNA double-strand break repair. DNA Repair (Amst.) 10, 126–137 (2011).

    Article  CAS  Google Scholar 

  39. Zakharyevich, K. et al. Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40, 1001–1015 (2010).

    Article  CAS  Google Scholar 

  40. Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50–62 (2010).

    Article  CAS  Google Scholar 

  41. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    Article  CAS  Google Scholar 

  42. Budd, M.E. et al. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability. PLoS Genet. 1, e61 (2005).

    Article  Google Scholar 

  43. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  44. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    Article  CAS  Google Scholar 

  45. Sugawara, N., Wang, X. & Haber, J.E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003).

    Article  CAS  Google Scholar 

  46. Loog, M. & Morgan, D.O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Lyons and D. Morgan (University of California, San Francisco) for providing Cdk1 kinase and valuable advice. This work was supported by US National Institutes of Health (NIH) grants GM080600 and 3R01GM080600 to G.I., RO1GM57814 and RO1ES07061 to P.S., and GM071011 and 3R01 GM071011 to S.E.L.

Author information

Authors and Affiliations

Authors

Contributions

X.C. constructed most of the strains and plasmids, analyzed Dna2 phosphorylation in cells, carried out fluorescence microscopy and ChIP experiments. W.-H.C. and A.P. analyzed resection in mutants, and H.N. purified proteins and conducted all the in vitro experiments. Z.Z. constructed the initial plasmids carrying dna2 mutant alleles. X.C., H.N., P.S. and G.I. designed the experiments, analyzed the data and wrote the manuscript. E.Y.S. and S.E.L. did the ChIP assay for Sgs1-13 × Myc.

Corresponding authors

Correspondence to Patrick Sung or Grzegorz Ira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 2358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Niu, H., Chung, WH. et al. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat Struct Mol Biol 18, 1015–1019 (2011). https://doi.org/10.1038/nsmb.2105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing