Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

DNA secondary structures and epigenetic determinants of cancer genome evolution

Abstract

An unstable genome is a hallmark of many cancers. It is unclear, however, whether some mutagenic features driving somatic alterations in cancer are encoded in the genome sequence and whether they can operate in a tissue-specific manner. We performed a genome-wide analysis of 663,446 DNA breakpoints associated with somatic copy-number alterations (SCNAs) from 2,792 cancer samples classified into 26 cancer types. Many SCNA breakpoints are spatially clustered in cancer genomes. We observed a significant enrichment for G-quadruplex sequences (G4s) in the vicinity of SCNA breakpoints and established that SCNAs show a strand bias consistent with G4-mediated structural alterations. Notably, abnormal hypomethylation near G4s-rich regions is a common signature for many SCNA breakpoint hotspots. We propose a mechanistic hypothesis that abnormal hypomethylation in genomic regions enriched for G4s acts as a mutagenic factor driving tissue-specific mutational landscapes in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial distribution of breakpoint hotspots in cancer genomes and genomes of healthy human subjects.
Figure 2: Association between G-quadruplex–forming sequences and breakpoint hotspots.
Figure 3: Role of G-quadruplex structures in the generation of breakpoint hotspots.
Figure 4: A mechanistic hypothesis of epigenetic involvement in the generation of breakpoints in cancer genomes.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  Google Scholar 

  3. Leary, R.J. et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci. USA 105, 16224–16229 (2008).

    Article  CAS  Google Scholar 

  4. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  5. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  6. Kim, J.I. et al. A highly annotated whole-genome sequence of a Korean individual. Nature 460, 1011–1015 (2009).

    Article  CAS  Google Scholar 

  7. Stephens, P.J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    Article  CAS  Google Scholar 

  8. Feinberg, A.P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).

    Article  CAS  Google Scholar 

  9. Hastings, P.J., Lupski, J.R., Rosenberg, S.M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009).

    Article  CAS  Google Scholar 

  10. Stratton, M.R., Campbell, P.J. & Futreal, P.A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  Google Scholar 

  11. Wang, G., Christensen, L.A. & Vasquez, K.M. Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc. Natl. Acad. Sci. USA 103, 2677–2682 (2006).

    Article  CAS  Google Scholar 

  12. Wang, G. & Vasquez, K.M. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 13448–13453 (2004).

    Article  CAS  Google Scholar 

  13. Zhao, J., Bacolla, A., Wang, G. & Vasquez, K.M. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 67, 43–62 (2010).

    Article  CAS  Google Scholar 

  14. Huppert, J.L. Structure, location and interactions of G-quadruplexes. FEBS J. 277, 3452–3458 (2010).

    Article  CAS  Google Scholar 

  15. Lipps, H.J. & Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 19, 414–422 (2009).

    Article  CAS  Google Scholar 

  16. Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat. Struct. Mol. Biol. 13, 1055–1059 (2006).

    Article  CAS  Google Scholar 

  17. Sun, D. & Hurley, L.H. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol. Biol. 608, 65–79 (2010).

    Article  CAS  Google Scholar 

  18. Kruisselbrink, E. et al. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 18, 900–905 (2008).

    Article  CAS  Google Scholar 

  19. Pontier, D.B., Kruisselbrink, E., Guryev, V. & Tijsterman, M. Isolation of deletion alleles by G4 DNA-induced mutagenesis. Nat. Methods 6, 655–657 (2009).

    Article  CAS  Google Scholar 

  20. Boán, F. & Gomez-Marquez, J. In vitro recombination mediated by G-quadruplexes. ChemBioChem 11, 331–334 (2010).

    Article  Google Scholar 

  21. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Article  CAS  Google Scholar 

  22. Kanai, Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci. 101, 36–45 (2010).

    Article  CAS  Google Scholar 

  23. Carbone, L. et al. Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet. 5, e1000538 (2009).

    Article  Google Scholar 

  24. Halder, K., Halder, R. & Chowdhury, S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals. Mol. Biosyst. 5, 1703–1712 (2009).

    Article  CAS  Google Scholar 

  25. Huppert, J.L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

    Article  CAS  Google Scholar 

  26. Wong, H.M. & Huppert, J.L. Stable G-quadruplexes are found outside nucleosome-bound regions. Mol. Biosyst. 5, 1713–1719 (2009).

    Article  CAS  Google Scholar 

  27. Behe, M. & Felsenfeld, G. Effects of methylation on a synthetic polynucleotide: the B–Z transition in poly(dG-m5dC)•poly(dG-m5dC). Proc. Natl. Acad. Sci. USA 78, 1619–1623 (1981).

    Article  CAS  Google Scholar 

  28. Vargason, J.M. & Ho, P.S. The effect of cytosine methylation on the structure and geometry of the Holliday junction: the structure of d(CCGGTACm5CGG) at 1.5 A resolution. J. Biol. Chem. 277, 21041–21049 (2002).

    Article  CAS  Google Scholar 

  29. Tsumagari, K. et al. Epigenetics of a tandem DNA repeat: chromatin DNaseI sensitivity and opposite methylation changes in cancers. Nucleic Acids Res. 36, 2196–2207 (2008).

    Article  CAS  Google Scholar 

  30. Halder, R. et al. Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol. Biosyst. 6, 2439–2447 (2010).

    Article  CAS  Google Scholar 

  31. O'Neil, J. & Look, A.T. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 26, 6838–6849 (2007).

    Article  CAS  Google Scholar 

  32. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  Google Scholar 

  33. Sundquist, W.I. & Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989).

    Article  CAS  Google Scholar 

  34. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    Article  CAS  Google Scholar 

  35. Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–D619 (2010).

    Article  CAS  Google Scholar 

  36. Durkin, S.G. & Glover, T.W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  Google Scholar 

  37. Mani, P., Yadav, V.K., Das, S.K. & Chowdhury, S. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination. PLoS ONE 4, e4399 (2009).

    Article  Google Scholar 

  38. Huppert, J.L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  Google Scholar 

  39. Gehring, K., Leroy, J.L. & Gueron, M. A tetrameric DNA structure with protonated cytosine•cytosine base pairs. Nature 363, 561–565 (1993).

    Article  CAS  Google Scholar 

  40. Sun, D. & Hurley, L.H. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 52, 2863–2874 (2009).

    Article  CAS  Google Scholar 

  41. Crabbe, L., Verdun, R.E., Haggblom, C.I. & Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953 (2004).

    Article  CAS  Google Scholar 

  42. Sarkies, P., Reams, C., Simpson, L.J. & Sale, J.E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010).

    Article  CAS  Google Scholar 

  43. Basundra, R. et al. A novel G-quadruplex motif modulates promoter activity of human thymidine kinase 1. FEBS J. 277, 4254–4264 (2010).

    Article  CAS  Google Scholar 

  44. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  Google Scholar 

  45. Mekmaysy, C.S. et al. Effect of O6-methylguanine on the stability of G-quadruplex DNA. J. Am. Chem. Soc. 130, 6710–6711 (2008).

    Article  CAS  Google Scholar 

  46. Shann, Y.J. et al. Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines. Genome Res. 18, 791–801 (2008).

    Article  CAS  Google Scholar 

  47. Sadikovic, B. et al. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS ONE 3, e2834 (2008).

    Article  Google Scholar 

  48. Chodavarapu, R.K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    Article  CAS  Google Scholar 

  49. Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

    Article  CAS  Google Scholar 

  50. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Parmigiani, J. Widom, N. Maizels, G.-Ch. Yuan, R. Beroukhim and D. Patel for discussions and comments. S.D. is a recipient of Human Frontier Science Program long-term fellowship and is a Research Fellow at King's College, Cambridge. This work was funded by the US National Cancer Institute's initiative to found Physical Science–Oncology Centers (U54CA143798).

Author information

Authors and Affiliations

Authors

Contributions

S.D. and F.M. designed the research and wrote the manuscript. S.D. performed the research.

Corresponding author

Correspondence to Franziska Michor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–9 and Supplementary Methods (PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, S., Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 18, 950–955 (2011). https://doi.org/10.1038/nsmb.2089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2089

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer