Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chfr and RNF8 synergistically regulate ATM activation

Abstract

Protein ubiquitination is a crucial component of the DNA damage response. To study the mechanism of the DNA damage–induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Notably, DNA damage–induced activation of ATM kinase is suppressed in cells deficient in both RNF8 and Chfr (double-knockout, or DKO), and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We present evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4 Lys16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and Chfr affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin-remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DNA damage–induced ATM signaling pathway is impaired in DKO cells.
Figure 2: RNF8 and Chfr double-deficient mice develop T-cell lymphoma.
Figure 3: Thymic lymphomas from DKO mice harbor clonal translocations.
Figure 4: DKO mice and MEFs are hypersensitive to ionizing radiation.
Figure 5: RNF8 and Chfr synergistically regulate histone ubiquitination and acetylation.
Figure 6: MRG15 links histone H2B ubiquitination and H4K16 acetylation.
Figure 7: Suppression of histone acetylation rescues ATM-dependent DNA damage response in DKO MEFs.
Figure 8: A model of histone modifications, chromatin relaxation and ATM activation after DNA damage.

Similar content being viewed by others

References

  1. Rouse, J. & Jackson, S.P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    CAS  Google Scholar 

  2. Harper, J.W. & Elledge, S.J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  Google Scholar 

  3. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  Google Scholar 

  4. Khanna, K.K., Lavin, M.F., Jackson, S.P. & Mulhern, T.D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052–1065 (2001).

    Article  CAS  Google Scholar 

  5. Rotman, G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135–6144 (1999).

    Article  CAS  Google Scholar 

  6. Harrison, J.C. & Haber, J.E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40, 209–235 (2006).

    Article  CAS  Google Scholar 

  7. Lavin, M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell. Biol. 9, 759–769 (2008).

    Article  CAS  Google Scholar 

  8. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  9. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    Article  CAS  Google Scholar 

  10. Taylor, A.M., Metcalfe, J.A., Thick, J. & Mak, Y.F. Leukemia and lymphoma in ataxia telangiectasia. Blood 87, 423–438 (1996).

    CAS  PubMed  Google Scholar 

  11. Liyanage, M. et al. Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96, 1940–1946 (2000).

    CAS  PubMed  Google Scholar 

  12. Panier, S. & Durocher, D. Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst.) 8, 436–443 (2009).

    Article  CAS  Google Scholar 

  13. Bennett, E.J. & Harper, J.W. DNA damage: ubiquitin marks the spot. Nat. Struct. Mol. Biol. 15, 20–22 (2008).

    Article  CAS  Google Scholar 

  14. Huen, M.S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    Article  CAS  Google Scholar 

  15. Kolas, N.K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  Google Scholar 

  16. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  Google Scholar 

  17. Wang, B. & Elledge, S.J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl. Acad. Sci. USA 104, 20759–20763 (2007).

    Article  CAS  Google Scholar 

  18. Ito, K. et al. N-terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur. J. Biochem. 268, 2725–2732 (2001).

    Article  CAS  Google Scholar 

  19. Zhao, G.Y. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol. Cell 25, 663–675 (2007).

    Article  CAS  Google Scholar 

  20. Brooks, L. III, Heimsath, E.G. Jr., Loring, G.L. & Brenner, C. FHA-RING ubiquitin ligases in cell division cycle control. Cell. Mol. Life Sci. 65, 3458–3466 (2008).

    Article  CAS  Google Scholar 

  21. Bothos, J., Summers, M.K., Venere, M., Scolnick, D.M. & Halazonetis, T.D. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 22, 7101–7107 (2003).

    Article  CAS  Google Scholar 

  22. Mizuno, K. et al. Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21, 2328–2333 (2002).

    Article  CAS  Google Scholar 

  23. Toyota, M. et al. Epigenetic inactivation of CHFR in human tumors. Proc. Natl. Acad. Sci. USA 100, 7818–7823 (2003).

    Article  CAS  Google Scholar 

  24. Huen, M.S. et al. Noncanonical E2 variant-independent function of UBC13 in promoting checkpoint protein assembly. Mol. Cell. Biol. 28, 6104–6112 (2008).

    Article  CAS  Google Scholar 

  25. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  26. Bertholon, J. et al. Chfr inactivation is not associated to chromosomal instability in colon cancers. Oncogene 22, 8956–8960 (2003).

    Article  CAS  Google Scholar 

  27. Lefrançois, D., Kokalj, N., Viegas-Pequignot, E., Montagnier, L. & Dutrillaux, B. High recurrence of rearrangements involving chromosome 14 in an ataxia telangiectasia lymphoblastoid cell line and in its mutagen-treated derivatives. Hum. Genet. 86, 475–480 (1991).

    Article  Google Scholar 

  28. Davey, M.P. et al. Juxtaposition of the T-cell receptor alpha-chain locus (14q11) and a region (14q32) of potential importance in leukemogenesis by a 14;14 translocation in a patient with T-cell chronic lymphocytic leukemia and ataxia-telangiectasia. Proc. Natl. Acad. Sci. USA 85, 9287–9291 (1988).

    Article  CAS  Google Scholar 

  29. Baer, R. et al. The breakpoint of an inversion of chromosome 14 in a T-cell leukemia: sequences downstream of the immunoglobulin heavy chain locus are implicated in tumorigenesis. Proc. Natl. Acad. Sci. USA 84, 9069–9073 (1987).

    Article  CAS  Google Scholar 

  30. Li, L. et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J. Exp. Med. 207, 983–997 (2010).

    Article  CAS  Google Scholar 

  31. Santos, M.A. et al. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J. Exp. Med. 207, 973–981 (2010).

    Article  CAS  Google Scholar 

  32. Wu, J. et al. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol. Cell. Biol. 29, 849–860 (2009).

    Article  CAS  Google Scholar 

  33. Lu, L.Y. et al. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev. Cell 18, 371–384 (2010).

    Article  CAS  Google Scholar 

  34. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  35. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  36. Gordon, F., Luger, K. & Hansen, J.C. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J. Biol. Chem. 280, 33701–33706 (2005).

    Article  CAS  Google Scholar 

  37. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  Google Scholar 

  38. Rea, S., Xouri, G. & Akhtar, A. Males absent on the first (MOF): from flies to humans. Oncogene 26, 5385–5394 (2007).

    Article  CAS  Google Scholar 

  39. Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).

    Article  CAS  Google Scholar 

  40. Lee, K.K. & Workman, J.L. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell. Biol. 8, 284–295 (2007).

    Article  CAS  Google Scholar 

  41. Cai, Y. et al. Identification of new subunits of the multiprotein mammalian TRRAP/TIP60-containing histone acetyltransferase complex. J. Biol. Chem. 278, 42733–42736 (2003).

    Article  CAS  Google Scholar 

  42. Garcia, S.N., Kirtane, B.M., Podlutsky, A.J., Pereira-Smith, O.M. & Tominaga, K. Mrg15 null and heterozygous mouse embryonic fibroblasts exhibit DNA-repair defects post exposure to gamma ionizing radiation. FEBS Lett. 581, 5275–5281 (2007).

    Article  CAS  Google Scholar 

  43. Pardo, P.S., Leung, J.K., Lucchesi, J.C. & Pereira-Smith, O.M. MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation. J. Biol. Chem. 277, 50860–50866 (2002).

    Article  CAS  Google Scholar 

  44. Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell 113, 609–620 (2003).

    Article  CAS  Google Scholar 

  45. Mueller, T.D. & Feigon, J. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J. Mol. Biol. 319, 1243–1255 (2002).

    Article  CAS  Google Scholar 

  46. Zgheib, O. et al. ATM signaling and 53BP1. Radiother. Oncol. 76, 119–122 (2005).

    Article  CAS  Google Scholar 

  47. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (Suppl), S45–S55 (2002).

    Article  CAS  Google Scholar 

  48. Shiotani, B. & Zou, L. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell 33, 547–558 (2009).

    Article  CAS  Google Scholar 

  49. You, Z., Bailis, J.M., Johnson, S.A., Dilworth, S.M. & Hunter, T. Rapid activation of ATM on DNA flanking double-strand breaks. Nat. Cell Biol. 9, 1311–1318 (2007).

    Article  CAS  Google Scholar 

  50. Kim, Y.C. et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat. Cell Biol. 11, 92–96 (2009).

    Article  CAS  Google Scholar 

  51. Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8, 91–99 (2006).

    Article  CAS  Google Scholar 

  52. Ikura, T. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell. Biol. 27, 7028–7040 (2007).

    Article  CAS  Google Scholar 

  53. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA 102, 13182–13187 (2005).

    Article  CAS  Google Scholar 

  54. Ahel, I. et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451, 81–85 (2008).

    Article  CAS  Google Scholar 

  55. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    Article  CAS  Google Scholar 

  56. Sun, Y. et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat. Cell Biol. 11, 1376–1382 (2009).

    Article  CAS  Google Scholar 

  57. Yu, X. et al. Chfr is required for tumor suppression and Aurora A regulation. Nat. Genet. 37, 401–406 (2005).

    Article  CAS  Google Scholar 

  58. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Fearon, K. Cho, B. Margolis, D. Yali and L. Yang at the University of Michigan for sharing experimental equipment, Z. You at Washington University and K. Tominaga at University of Texas Health Science Center at San Antonio for reagents and J. Keller for proofreading the manuscript. This work was supported by the American Cancer Society (RSG-08-125-01-CCG to X.Y.) and the US National Institutes of Health (CA132755 and CA130899 to X.Y.). X.Y. is a recipient of the Era of Hope Scholar Award from the US Department of Defense.

Author information

Authors and Affiliations

Authors

Contributions

J.W. performed most experiments. Y.C. analyzed the MRG15-related protein-protein interactions. L.-Y.L., M.T.P., M.L., Y.W. and D.O.F. provided technical support for various assays. X.Y. designed the experiments. X.Y. and J.W. wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaochun Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1-7, Supplementary Table 1 and Supplementary Methods (PDF 2455 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Chen, Y., Lu, LY. et al. Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 18, 761–768 (2011). https://doi.org/10.1038/nsmb.2078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing