Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure

Abstract

Deg1 is a chloroplastic protease involved in maintaining the photosynthetic machinery. Structural and biochemical analyses reveal that the inactive Deg1 monomer is transformed into the proteolytically active hexamer at acidic pH. The change in pH is sensed by His244, which upon protonation, repositions a specific helix to trigger oligomerization. This system ensures selective activation of Deg1 during daylight, when acidification of the thylakoid lumen occurs and photosynthetic proteins are damaged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Deg1.
Figure 2: pH-dependent change in oligomeric state and protease activity.
Figure 3: Model of Deg1 regulation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Adir, N. et al. Photosynth. Res. 76, 343–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Aro, E.M. et al. Biochim. Biophys. Acta 1143, 113–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Barber, J. & Andersson, B. Trends Biochem. Sci. 17, 61–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Long, S.P. et al. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 633–662 (1994).

    Article  CAS  Google Scholar 

  5. Bailey, S. et al. J. Biol. Chem. 277, 2006–2011 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kapri-Pardes, E. et al. Plant Cell 19, 1039–1047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindahl, M. et al. Plant Cell 12, 419–431 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakamoto, W. et al. Genes Cells 7, 769–780 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, X. et al. Plant Cell 19, 1347–1361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilken, C. et al. Cell 117, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Kirk, R. & Clausen, T. in Sensory Mechanisms in Bacteria: Molecular Aspects of Signal Recognition (eds. Spiro, S. & Dixon, R.) 231–254 (Caister Academic Press, 2010).

  12. Hasselblatt, H. et al. Genes Dev. 21, 2659–2670 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krojer, T. et al. Nat. Struct. Mol. Biol. 17, 844–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Clausen, T. et al. Mol. Cell 10, 443–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Krojer, T. et al. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Dekker, J.P. & Boekema, E.J. Biochim. Biophys. Acta 1706, 12–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Chassin, Y. et al. Plant Physiol. 130, 857–864 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindahl, M. et al. J. Biol. Chem. 271, 29329–29334 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Ito, K. & Akiyama, Y. Annu. Rev. Microbiol. 59, 211–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Clausen, T., Kaiser, M., Huber, R. & Ehrmann, M. Nat. Rev. Mol. Cell Biol. 12, 152–162 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Huber Max Planck Institute for Biochemistry and J.M. Peters Research Institute of Molecular Pathology for critical reading of the manuscript and helpful discussion, D. Charuvi (Hebrew University) for calculating the volume of the thylakoid lumen and C. Wilken Research Institute of Molecular Pathology for help with crystallizing Deg1. Crystallographic experiments were conducted at the beamline ID14-EH4 at the European Synchrotron Radiation Facility. This research was supported in part by a grant from the Israel Science Foundation to Z.A. The Research Institute of Molecular Pathology (IMP) is funded by Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Contributions

J.K., B.S., B.B., R.K., R.R.K. and L.N. did the experiments and analyzed the data; P.C.S.-B., M.E. and Z.A. designed experiments and commented on the manuscript; and T.C. coordinated the project, designed experiments, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Zach Adam or Tim Clausen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 1369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kley, J., Schmidt, B., Boyanov, B. et al. Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat Struct Mol Biol 18, 728–731 (2011). https://doi.org/10.1038/nsmb.2055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing