Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma

Abstract

High-density lipoproteins (HDLs) mediate cholesterol transport and protection from cardiovascular disease. Although synthetic HDLs have been studied for 30 years, the structures of human plasma–derived HDL and its major protein apolipoprotein apoA-I are unknown. We separated normal human HDL into five density subfractions and then further isolated those containing predominantly apoA-I (LpA-I). Using cross-linking chemistry and mass spectrometry, we found that apoA-I adopts a structural framework in these particles that closely mirrors that in synthetic HDL. We adapted established structures for synthetic HDL to generate the first detailed models of authentic human plasma HDL in which apoA-I adopts a symmetrical cage-like structure. The models suggest that HDL particle size is modulated by means of a twisting motion of the resident apoA-I molecules. This understanding offers insights into how apoA-I structure modulates HDL function and its interactions with other apolipoproteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and characterization of human plasma LpA-I HDL particles.
Figure 2: Estimation of the number of apoA-I molecules per particle in LpA-I subfractions.
Figure 3: Investigating apoA-I conformation in LpA-I particles.
Figure 4: Trefoil model of apoA-I on spherical particles with experimental cross-links derived from human plasma HDL particles.
Figure 5: Incorporation of additional apoA-I molecules to the trefoil model and apoA-I adaptation to smaller particle diameters.
Figure 6: Molecular twist required to attain the experimentally LpA-I particle diameters.

Similar content being viewed by others

References

  1. Gordon, T., Castelli, W.P., Hjortland, M.C., Kannel, W.B. & Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 62, 707–714 (1977).

    Article  CAS  Google Scholar 

  2. Rye, K.A., Bursill, C.A., Lambert, G., Tabet, F. & Barter, P.J. The metabolism and anti-atherogenic properties of HDL. J. Lipid Res. 50 Suppl, S195–S200 (2009).

    Article  Google Scholar 

  3. Davidson, W.S. & Thompson, T.B. The structure of apolipoprotein A-I in high density lipoproteins. J. Biol. Chem. 282, 22249–22253 (2007).

    Article  CAS  Google Scholar 

  4. Thomas, M.J., Bhat, S. & Sorci-Thomas, M.G. Three-dimensional models of HDL apoA-I: implications for its assembly and function. J. Lipid Res. 49, 1875–1883 (2008).

    Article  CAS  Google Scholar 

  5. Segrest, J.P., Harvey, S.C. & Zannis, V. Detailed molecular model of apolipoprotein A-I on the surface of high-density lipoproteins and its functional implications. Trends Cardiovasc. Med. 10, 246–252 (2000).

    Article  CAS  Google Scholar 

  6. Koppaka, V., Silvestro, L., Engler, J.A., Brouillette, C.G. & Axelsen, P.H. The structure of human lipoprotein A-I. Evidence for the 'belt' model. J. Biol. Chem. 274, 14541–14544 (1999).

    Article  CAS  Google Scholar 

  7. Bhat, S., Sorci-Thomas, M.G., Alexander, E.T., Samuel, M.P. & Thomas, M.J. Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J. Biol. Chem. 280, 33015–33025 (2005).

    Article  CAS  Google Scholar 

  8. Davidson, W.S. & Hilliard, G.M. The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: A mass spectrometry study. J. Biol. Chem. 278, 27199–27207 (2003).

    Article  CAS  Google Scholar 

  9. Panagotopulos, S.E., Horace, E.M., Maiorano, J.N. & Davidson, W.S. Apoliprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins. J. Biol. Chem. 276, 42965–42970 (2001).

    Article  CAS  Google Scholar 

  10. Silva, R.A., Hilliard, G.M., Li, L., Segrest, J.P. & Davidson, W.S. A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochemistry 44, 8600–8607 (2005).

    Article  CAS  Google Scholar 

  11. Bhat, S., Sorci-Thomas, M.G., Tuladhar, R., Samuel, M.P. & Thomas, M.J. Conformational adaptation of apolipoprotein A-I to discretely sized phospholipid complexes. Biochemistry 46, 7811–7821 (2007).

    Article  CAS  Google Scholar 

  12. Martin, D.D., Budamagunta, M.S., Ryan, R.O., Voss, J.C. & Oda, M.N. Apolipoprotein A-I assumes a 'looped belt' conformation on reconstituted high density lipoprotein. J. Biol. Chem. 281, 20418–20426 (2006).

    Article  CAS  Google Scholar 

  13. Wu, Z. et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol. 14, 861–868 (2007).

    Article  CAS  Google Scholar 

  14. Wu, Z. et al. Double superhelix model of high density lipoprotein. J. Biol. Chem. 284, 36605–36619 (2009).

    Article  CAS  Google Scholar 

  15. Gogonea, V. et al. Congruency between biophysical data from multiple platforms and molecular dynamics simulation of the double-super helix model of nascent high-density lipoprotein. Biochemistry 49, 7323–7343 (2010).

    Article  CAS  Google Scholar 

  16. Jones, M.K. et al. Assessment of the validity of the double superhelix model for reconstituted high density lipoproteins: a combined computational-experimental approach. J. Biol. Chem. 285, 41161–41171 (2010).

    Article  CAS  Google Scholar 

  17. Jonas, A., Wald, J.H., Toohill, K.L., Krul, E.S. & Kezdy, K.E. Apolipoprotein A-I structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins. J. Biol. Chem. 265, 22123–22129 (1990).

    CAS  PubMed  Google Scholar 

  18. Segrest, J.P., Garber, D.W., Brouillette, C.G., Harvey, S.C. & Anantharamaiah, G.M. The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv. Protein Chem. 45, 303–369 (1994).

    Article  CAS  Google Scholar 

  19. Li, H.H. et al. ApoA-I structure on discs and spheres. Variable helix registry and conformational states. J. Biol. Chem. 277, 39093–39101 (2002).

    Article  CAS  Google Scholar 

  20. Sparks, D.L., Phillips, M.C. & Lund-Katz, S. The conformation of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. 13C NMR studies of lysine ionization behavior. J. Biol. Chem. 267, 25830–25838 (1992).

    CAS  PubMed  Google Scholar 

  21. Silva, R.A. et al. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA 105, 12176–12181 (2008).

    Article  CAS  Google Scholar 

  22. Catte, A. et al. Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study. Biophys. J. 90, 4345–4360 (2006).

    Article  CAS  Google Scholar 

  23. Gu, F. et al. Structures of discoidal high density lipoproteins: a combined computational-experimental approach. J. Biol. Chem. 285, 4652–4665 (2010).

    Article  CAS  Google Scholar 

  24. Kontush, A., Chantepie, S. & Chapman, M.J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol. 23, 1881–1888 (2003).

    Article  CAS  Google Scholar 

  25. Rosales, C., Gillard, B.K., Courtney, H.S., Blanco-Vaca, F. & Pownall, H.J. Apolipoprotein modulation of streptococcal serum opacity factor activity against human plasma high-density lipoproteins. Biochemistry 48, 8070–8076 (2009).

    Article  CAS  Google Scholar 

  26. Kontush, A. et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler. Thromb. Vasc. Biol. 27, 1843–1849 (2007).

    Article  CAS  Google Scholar 

  27. Davidson, W.S. et al. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler. Thromb. Vasc. Biol. 29, 870–876 (2009).

    Article  CAS  Google Scholar 

  28. Brouillette, C.G. & Anantharamaiah, G.M. Structural models of human apolipoprotein A-I. Biochim. Biophys. Acta 1256, 103–129 (1995).

    Article  Google Scholar 

  29. de Souza, J.A. et al. Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective anti-apoptotic activity. Atherosclerosis 197, 84–94 (2008).

    Article  CAS  Google Scholar 

  30. Ibdah, J.A., Lund-Katz, S. & Phillips, M.C. Molecular packing of high-density and low-density lipoprotein surface lipids and apolipoprotein A-I binding. Biochemistry 28, 1126–1133 (1989).

    Article  CAS  Google Scholar 

  31. Hofsäss, C., Lindahl, E. & Edholm, O. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys. J. 84, 2192–2206 (2003).

    Article  Google Scholar 

  32. Gordon, S.M., Deng, J., Lu, L.J. & Davidson, W.S. Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography. J. Proteome Res. 9, 5239–5249 (2010).

    Article  CAS  Google Scholar 

  33. Curtiss, L.K., Bonnet, D.J. & Rye, K.A. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study. Biochemistry 39, 5712–5721 (2000).

    Article  CAS  Google Scholar 

  34. Córsico, B., Toledo, J.D. & Garda, H.A. Evidence for a central apolipoprotein A-I domain loosely bound to lipids in discoidal lipoproteins that is capable of penetrating the bilayer of phospholipid vesicles. J. Biol. Chem. 276, 16978–16985 (2001).

    Article  Google Scholar 

  35. Maiorano, J.N., Jandacek, R.J., Horace, E.M. & Davidson, W.S. Identification and structural ramifications of a hinge domain in apolipoprotein A-I discoidal high-density lipoproteins of different size. Biochemistry 43, 11717–11726 (2004).

    Article  CAS  Google Scholar 

  36. Jones, M.K., Catte, A., Li, L. & Segrest, J.P. Dynamics of activation of lecithin:cholesterol acyltransferase by apolipoprotein A-I. Biochemistry 48, 11196–11210 (2009).

    Article  CAS  Google Scholar 

  37. Roberts, L.M. et al. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I. Biochemistry 36, 7615–7624 (1997).

    Article  CAS  Google Scholar 

  38. Catte, A. et al. Structure of spheroidal HDL particles revealed by combined atomistic and coarse-grained simulations. Biophys. J. 94, 2306–2319 (2008).

    Article  CAS  Google Scholar 

  39. Borhani, D.W., Rogers, D.P., Engler, J.A. & Brouillette, C.G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc. Natl. Acad. Sci. USA 94, 12291–12296 (1997).

    Article  CAS  Google Scholar 

  40. Lund-Katz, S. et al. Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. J. Lipid Res. 51, 606–617 (2010).

    Article  CAS  Google Scholar 

  41. Vaisar, T. et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117, 746–756 (2007).

    Article  CAS  Google Scholar 

  42. Chapman, M.J., Goldstein, S., Lagrange, D. & Laplaud, P.M. A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J. Lipid Res. 22, 339–358 (1981).

    CAS  PubMed  Google Scholar 

  43. Zerrad-Saadi, A. et al. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 2169–2175 (2009).

    Article  CAS  Google Scholar 

  44. Markwell, M.A., Haas, S.M., Bieber, L.L. & Tolbert, N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206–210 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) 01 grant HL67093 (to W.S.D.), an American Heart Association Great Rivers Postdoctoral Fellowship to R.H. (3880030), NIH R01 grant HL48148 (to W.G.J.) and NIH Pathway to Independence Award (K99/R00) HL087561 from the National Heart, Lung, and Blood Institute (to R.A.G.D.S.). Negative stain EM was carried out in the Vanderbilt University Research Electron Microscopy Resource of the Cell Imaging Core. This resource is partially supported by NIH grants CA68485, DK20593 and DK58404. A.K. was supported by Institut National de la Santé et de la Recherche Médicale, Fondation pour la Recherche Médicale en France. The images in Figure 6 were rendered by M. Hartsock (marcia@hartsockillustration.com). Any use of these images is subject to copyright law and should be negotiated with the artist. We also thank C. Smith for excellent administrative assistance.

Author information

Authors and Affiliations

Authors

Contributions

R.H., M.J.C. and W.S.D. designed the research plan. R.H., R.A.G.D.S., L.K.C., W.G.J. and A.K. conducted experiments. R.H., W.S.D. and T.J.H. analyzed data, and R.H. and W.S.D. wrote the manuscript.

Corresponding author

Correspondence to W Sean Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Silva, R., Jerome, W. et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol 18, 416–422 (2011). https://doi.org/10.1038/nsmb.2028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing