Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription

Abstract

Insulin (INS) synthesis and secretion from pancreatic β-cells are tightly regulated; their deregulation causes diabetes. Here we map INS-associated loci in human pancreatic islets by 4C and 3C techniques and show that the INS gene physically interacts with the SYT8 gene, located over 300 kb away. This interaction is elevated by glucose and accompanied by increases in SYT8 expression. Inactivation of the INS promoter by promoter-targeting siRNA reduces SYT8 gene expression. SYT8-INS interaction and SYT8 transcription are attenuated by CTCF depletion. Furthermore, SYT8 knockdown decreases insulin secretion in islets. These results reveal a nonredundant role for SYT8 in insulin secretion and indicate that the INS promoter acts from a distance to stimulate SYT8 transcription. This suggests a function for the INS promoter in coordinating insulin transcription and secretion through long-range regulation of SYT8 expression in human islets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 4C-Seq analysis reveals the association of SYT8 with INS gene in human pancreatic islets.
Figure 2: Glucose stimulates INS interactions with the SYT8-TNNI2 gene locus and increases SYT8 and TNNI2 gene expression in human islets.
Figure 3: The INS promoter positively regulates SYT8 and TNNI2 gene expression in human islets.
Figure 4: CTCF positively regulates SYT8 and TNNI2 gene expression in human islets and is important for the maintenance of the SYT8-INS interaction in human islets and human fibroblasts.
Figure 5: SYT8 is an important regulator of insulin secretion in human islets.

Similar content being viewed by others

References

  1. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  2. Fullwood, M.J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  Google Scholar 

  3. Apostolou, E. & Thanos, D. Virus infection induces NF-kB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134, 85–96 (2008).

    Article  CAS  Google Scholar 

  4. Hu, Q. et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. USA 105, 19199–19204 (2008).

    Article  CAS  Google Scholar 

  5. Lower, K.M. et al. Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc. Natl. Acad. Sci. USA 106, 21771–21776 (2009).

    Article  CAS  Google Scholar 

  6. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103, 2334–2339 (2006).

    Article  CAS  Google Scholar 

  7. De Vos, A. et al. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J. Clin. Invest. 96, 2489–2495 (1995).

    Article  CAS  Google Scholar 

  8. Eizirik, D.L. et al. Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc. Natl. Acad. Sci. USA 91, 9253–9256 (1994).

    Article  CAS  Google Scholar 

  9. McKnight, K.D., Wang, P. & Kim, S.K. Deconstructing pancreas development to reconstruct human islets from pluripotent stem cells. Cell Stem Cell 6, 300–308 (2010).

    Article  CAS  Google Scholar 

  10. Onyango, P. et al. Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res. 10, 1697–1710 (2000).

    Article  CAS  Google Scholar 

  11. Andrali, S.S., Sampley, M.L., Vanderford, N.L. & Ozcan, S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem. J. 415, 1–10 (2008).

    Article  CAS  Google Scholar 

  12. Henquin, J.C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    Article  CAS  Google Scholar 

  13. Odagiri, H., Wang, J. & German, M.S. Function of the human insulin promoter in primary cultured islet cells. J. Biol. Chem. 271, 1909–1915 (1996).

    Article  CAS  Google Scholar 

  14. Sander, M., Griffen, S.C., Huang, J. & German, M.S. A novel glucose-responsive element in the human insulin gene functions uniquely in primary cultured islets. Proc. Natl. Acad. Sci. USA 95, 11572–11577 (1998).

    Article  CAS  Google Scholar 

  15. Evans-Molina, C. et al. Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes 56, 827–835 (2007).

    Article  CAS  Google Scholar 

  16. Muller, D., Huang, G.C., Amiel, S., Jones, P.M. & Persaud, S.J. Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes 55, 2835–2842 (2006).

    Article  CAS  Google Scholar 

  17. Marban, S.L., DeLoia, J.A. & Gearhart, J.D. Hyperinsulinemia in transgenic mice carrying multiple copies of the human insulin gene. Dev. Genet. 10, 356–364 (1989).

    Article  CAS  Google Scholar 

  18. Karaca, M. et al. Transgenic expression of human INS gene in Ins1/Ins2 double knockout mice leads to insulin underproduction and diabetes in some male mice. Front. Biosci. 12, 1586–1593 (2007).

    Article  CAS  Google Scholar 

  19. Leighton, P.A., Ingram, R.S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S.M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).

    Article  CAS  Google Scholar 

  20. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. USA 103, 10684–10689 (2006).

    Article  CAS  Google Scholar 

  21. Vu, T.H., Nguyen, A.H. & Hoffman, A.R. Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells. Hum. Mol. Genet. 19, 901–919 (2010).

    Article  CAS  Google Scholar 

  22. Ling, J.Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).

    Article  CAS  Google Scholar 

  23. Sandhu, K.S. et al. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev. 23, 2598–2603 (2009).

    Article  CAS  Google Scholar 

  24. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  25. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  26. Gut, A. et al. Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. J. Cell Sci. 114, 1709–1716 (2001).

    CAS  PubMed  Google Scholar 

  27. Monterrat, C., Boal, F., Grise, F., Hemar, A. & Lang, J. Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. Biochim. Biophys. Acta 1763, 73–81 (2006).

    Article  CAS  Google Scholar 

  28. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  29. Gauthier, B.R. & Wollheim, C.B. Synaptotagmins bind calcium to release insulin. Am. J. Physiol. Endocrinol. Metab. 295, E1279–E1286 (2008).

    Article  CAS  Google Scholar 

  30. Gustavsson, N. et al. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc. Natl. Acad. Sci. USA 105, 3992–3997 (2008).

    Article  CAS  Google Scholar 

  31. Iezzi, M., Eliasson, L., Fukuda, M. & Wollheim, C.B. Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett. 579, 5241–5246 (2005).

    Article  CAS  Google Scholar 

  32. Mutskov, V., Raaka, B.M., Felsenfeld, G. & Gershengorn, M.C. The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25, 3223–3233 (2007).

    Article  CAS  Google Scholar 

  33. Susini, S., Roche, E., Prentki, M. & Schlegel, W. Glucose and glucoincretin peptides synergize to induce c-fos, c-jun, junB, zif-268, and nur-77 gene expression in pancreatic beta (INS-1) cells. FASEB J. 12, 1173–1182 (1998).

    Article  CAS  Google Scholar 

  34. Osborne, C.S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).

    Article  CAS  Google Scholar 

  35. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).

    Article  CAS  Google Scholar 

  36. Hawkins, P.G., Santoso, S., Adams, C., Anest, V. & Morris, K.V. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res. 37, 2984–2995 (2009).

    Article  CAS  Google Scholar 

  37. Ting, A.H., Schuebel, K.E., Herman, J.G. & Baylin, S.B. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    Article  CAS  Google Scholar 

  38. Leibiger, I.B., Leibiger, B. & Berggren, P.O. Insulin signaling in the pancreatic beta-cell. Annu. Rev. Nutr. 28, 233–251 (2008).

    Article  CAS  Google Scholar 

  39. Phillips, J.E. & Corces, V.G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  Google Scholar 

  40. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  41. Hutt, D.M., Baltz, J.M. & Ngsee, J.K. Synaptotagmin VI and VIII and syntaxin 2 are essential for the mouse sperm acrosome reaction. J. Biol. Chem. 280, 20197–20203 (2005).

    Article  CAS  Google Scholar 

  42. Mutskov, V. & Felsenfeld, G. The human insulin gene is part of a large open chromatin domain specific for human islets. Proc. Natl. Acad. Sci. USA 106, 17419–17424 (2009).

    Article  CAS  Google Scholar 

  43. Murphy, R. et al. Severe intrauterine growth retardation and atypical diabetes associated with a translocation breakpoint disrupting regulation of the insulin-like growth factor 2 gene. J. Clin. Endocrinol. Metab. 93, 4373–4380 (2008).

    Article  CAS  Google Scholar 

  44. Bhalla, A., Chicka, M.C. & Chapman, E.R. Analysis of the synaptotagmin family during reconstituted membrane fusion. Uncovering a class of inhibitory isoforms. J. Biol. Chem. 283, 21799–21807 (2008).

    Article  CAS  Google Scholar 

  45. Hutt, D.M., Cardullo, R.A., Baltz, J.M. & Ngsee, J.K. Synaptotagmin VIII is localized to the mouse sperm head and may function in acrosomal exocytosis. Biol. Reprod. 66, 50–56 (2002).

    Article  CAS  Google Scholar 

  46. Fukuda, M. & Mikoshiba, K. Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family. J. Biochem. 128, 637–645 (2000).

    Article  CAS  Google Scholar 

  47. Leibiger, I.B., Leibiger, B., Moede, T. & Berggren, P.O. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol. Cell 1, 933–938 (1998).

    Article  CAS  Google Scholar 

  48. Babu, D.A., Chakrabarti, S.K., Garmey, J.C. & Mirmira, R.G. Pdx1 and BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA looping at the insulin gene. J. Biol. Chem. 283, 8164–8172 (2008).

    Article  CAS  Google Scholar 

  49. Bartoov-Shifman, R. et al. Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 alpha. J. Biol. Chem. 277, 25914–25919 (2002).

    Article  CAS  Google Scholar 

  50. Kitanaka, S., Sato, U. & Igarashi, T. Regulation of human insulin, IGF-I, and multidrug resistance protein 2 promoter activity by hepatocyte nuclear factor (HNF)-1beta and HNF-1alpha and the abnormality of HNF-1beta mutants. J. Endocrinol. 192, 141–147 (2007).

    Article  CAS  Google Scholar 

  51. O'Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature 462, 307–314 (2009).

    Article  CAS  Google Scholar 

  52. Garin, I. et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl. Acad. Sci. USA 107, 3105–3110 (2010).

    Article  CAS  Google Scholar 

  53. Li, Y. et al. Fast skeletal muscle troponin I is a co-activator of estrogen receptor-related receptor alpha. Biochem. Biophys. Res. Commun. 369, 1034–1040 (2008).

    Article  CAS  Google Scholar 

  54. Giguère, V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr. Rev. 29, 677–696 (2008).

    Article  Google Scholar 

  55. Villena, J.A. & Kralli, A. ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol. Metab. 19, 269–276 (2008).

    Article  CAS  Google Scholar 

  56. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  57. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493–507 (2004).

    Article  CAS  Google Scholar 

  58. Baskin, L., Urschel, S. & Eiberger, B. A novel ex-vivo application of RNAi for neuroscience. Biotechniques 45, 338–339 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Islet Cell Resource Centers Basic Science Islet Distribution Program for providing isolated human pancreatic islets. We thank K. Cui and D. Schones for assistance with the Solexa sequencing and pipeline analysis. This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases and National Heart, Lung, and Blood Institute (US) Intramural Research Programs.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. and G.F. designed the experiments; Z.X. conducted the experiments; G.W., I.C. and K.Z. conducted and analyzed Solexa DNA Sequencing experiments; Z.X. and G.F. wrote the manuscript.

Corresponding author

Correspondence to Gary Felsenfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Notes (PDF 2966 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Wei, G., Chepelev, I. et al. Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription. Nat Struct Mol Biol 18, 372–378 (2011). https://doi.org/10.1038/nsmb.1993

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing