Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization

Abstract

The conformational plasticity of serine protease inhibitors (serpins) underlies both their activities as protease inhibitors and their susceptibility to pathogenic misfolding and aggregation. Here, we structurally characterize a sheet-opened state of the serpin α-1 antitrypsin (α1AT) and show how local unfolding allows functionally essential strand insertion. Mutations in α1AT that cause polymerization-induced serpinopathies map to the labile region, suggesting that the evolution of serpin function required sampling of high risk conformations on a dynamic energy landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of cysteine mutations to probe low denaturant–induced strand opening in the serpin α1AT.
Figure 2: Accessibility of cysteinyl thiols at the indicated position in α1AT single-cysteine variants as a function of denaturant and comparison to unfolding monitored by CD.
Figure 3: Structural context of cysteines belonging to the three classes with varying extents of PEGylation.
Figure 4: Solvent accessibility of single cysteines at the indicated positions in the Z variant of α1AT.
Figure 5: Local unfolding leads to the sheet-opened intermediate of α1AT.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gettins, P.G. Serpin structure, mechanism, and function. Chem. Rev. 102, 4751–4804 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  2. Huntington, J.A., Read, R.J. & Carrell, R.W. Structure of a serpin-protease complex shows inhibition by deformation. Nature 407, 923–926 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  3. Dupont, D.M. et al. Biochemical properties of plasminogen activator inhibitor-1. Front. Biosci. 14, 1337–1361 (2009).

    Article  CAS  Google Scholar 

  4. Mushunje, A., Evans, G., Brennan, S.O., Carrell, R.W. & Zhou, A. Latent antithrombin and its detection, formation and turnover in the circulation. J. Thromb. Haemost. 2, 2170–2177 (2004).

    Article  CAS  Google Scholar 

  5. Kaslik, G. et al. Effects of serpin binding on the target proteinase: global stabilization, localized increased structural flexibility, and conserved hydrogen bonding at the active site. Biochemistry 36, 5455–5464 (1997).

    Article  CAS  Google Scholar 

  6. Wang, Z., Mottonen, J. & Goldsmith, E.J. Kinetically controlled folding of the serpin plasminogen activator inhibitor 1. Biochemistry 35, 16443–16448 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  7. Gooptu, B. & Lomas, D.A. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu. Rev. Biochem. 78, 147–176 (2009).

    Article  CAS  Google Scholar 

  8. Tran, S.T. & Shrake, A. The folding of α-1-proteinase inhibitor: kinetic vs equilibrium control. Arch. Biochem. Biophys. 385, 322–331 (2001).

    Article  CAS  Google Scholar 

  9. Yamasaki, M., Li, W., Johnson, D.J. & Huntington, J.A. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455, 1255–1258 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  10. Yamasaki, M., Sendall, T.J., Harris, L.E., Lewis, G.M. & Huntington, J.A. The loop-sheet mechanism of serpin polymerization tested by reactive center loop mutations. J. Biol. Chem. 285, 30752–30758 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  11. Ekeowa, U.I. et al. Defining the mechanism of polymerization in the serpinopathies. Proc. Natl. Acad. Sci. USA 107, 17146–17151 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  12. James, E.L., Whisstock, J.C., Gore, M.G. & Bottomley, S.P. Probing the unfolding pathway of α1-antitrypsin. J. Biol. Chem. 274, 9482–9488 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  13. Cabrita, L.D., Whisstock, J.C. & Bottomley, S.P. Probing the role of the F-helix in serpin stability through a single tryptophan substitution. Biochemistry 41, 4575–4581 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  14. Whisstock, J.C. & Bottomley, S.P. Serpins' mystery solved. Nature 455, 1189–1190 (2008).

    Article  CAS  Google Scholar 

  15. Tsutsui, Y. & Wintrode, P.L. Cooperative unfolding of a metastable serpin to a molten globule suggests a link between functional and folding energy landscapes. J. Mol. Biol. 371, 245–255 (2007).

    Article  CAS  Google Scholar 

  16. Seo, E.J., Im, H., Maeng, J.S., Kim, K.E. & Yu, M.H. Distribution of the native strain in human α 1-antitrypsin and its association with protease inhibitor function. J. Biol. Chem. 275, 16904–16909 (2000).

    Article  CAS  Google Scholar 

  17. Lu, J. & Deutsch, C. PEGylation: a method for assessing topological accessibilities in Kv1.3. Biochemistry 40, 13288–13301 (2001).

    Article  CAS  Google Scholar 

  18. Bottomley, S.P., Hopkins, P.C. & Whisstock, J.C. Alpha 1-antitrypsin polymerisation can occur by both loop A and C sheet mechanisms. Biochem. Biophys. Res. Commun. 251, 1–5 (1998).

    Article  CAS  Google Scholar 

  19. Tew, D.J. & Bottomley, S.P. Probing the equilibrium denaturation of the serpin α (1)-antitrypsin with single tryptophan mutants; evidence for structure in the urea unfolded state. J. Mol. Biol. 313, 1161–1169 (2001).

    Article  CAS  Google Scholar 

  20. Powell, L.M. & Pain, R.H. Effects of glycosylation on the folding and stability of human, recombinant and cleaved α 1-antitrypsin. J. Mol. Biol. 224, 241–252 (1992).

    Article  CAS  Google Scholar 

  21. Knaupp, A.S., Levina, V., Robertson, A.L., Pearce, M.C. & Bottomley, S.P. Kinetic instability of the serpin Z α1-antitrypsin promotes aggregation. J. Mol. Biol. 396, 375–383 (2010).

    Article  CAS  Google Scholar 

  22. Brantly, M., Courtney, M. & Crystal, R.G. Repair of the secretion defect in the Z form of α 1-antitrypsin by addition of a second mutation. Science 242, 1700–1702 (1988).

    Article  CAS  Google Scholar 

  23. Zhou, A., Stein, P.E., Huntington, J.A. & Carrell, R.W. Serpin polymerization is prevented by a hydrogen bond network that is centered on His-334 and stabilized by glycerol. J. Biol. Chem. 278, 15116–15122 (2003).

    Article  CAS  Google Scholar 

  24. Kim, J., Lee, K.N., Yi, G.S. & Yu, M.H. A thermostable mutation located at the hydrophobic core of α 1-antitrypsin suppresses the folding defect of the Z-type variant. J. Biol. Chem. 270, 8597–8601 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  25. Zaimidou, S. et al. A1ATVar: a relational database of human SERPINA1 gene variants leading to α1-antitrypsin deficiency and application of the VariVis software. Hum. Mutat. 30, 308–313 (2009).

    Article  CAS  Google Scholar 

  26. Levina, V. et al. Expression, purification and characterization of recombinant Z α (1)-antitrypsin–the most common cause of α (1)-antitrypsin deficiency. Protein Expr. Purif. 68, 226–232 (2009).

    Article  CAS  Google Scholar 

  27. Clark, P. & Chong, A.Y. Rare α 1 antitrypsin allele PI W and a history of infant liver disease. Am. J. Med. Genet. 45, 674–676 (1993).

    Article  CAS  Google Scholar 

  28. Yu, M.H., Lee, K.N. & Kim, J. The Z type variation of human α 1-antitrypsin causes a protein folding defect. Nat. Struct. Biol. 2, 363–367 (1995).

    Article  CAS  Google Scholar 

  29. Lomas, D.A. New insights into the structural basis of α 1-antitrypsin deficiency. Q. J. Med. 89, 807–812 (1996).

    Article  CAS  Google Scholar 

  30. Mahadeva, R. et al. Polymers of Z α1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am. J. Pathol. 166, 377–386 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  31. Elliott, P.R., Pei, X.Y., Dafforn, T.R. & Lomas, D.A. Topography of a 2.0 Å structure of α1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci. 9, 1274–1281 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  32. Laska, M.E. The effect of dissolved oxygen on recombinant protein degradation in Escherichia coli. PhD thesis. (Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2001).

  33. Ignatova, Z. & Gierasch, L.M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl. Acad. Sci. USA 103, 13357–13361 (2006).

    Article  CAS  Google Scholar 

  34. Nath, U. & Udgaonkar, J.B. Perturbation of a tertiary hydrogen bond in barstar by mutagenesis of the sole His residue to Gln leads to accumulation of at least one equilibrium folding intermediate. Biochemistry 34, 1702–1713 (1995).

    Article  CAS  Google Scholar 

  35. Weissman, J.S. & Kim, P.S. Reexamination of the folding of BPTI: predominance of native intermediates. Science 253, 1386–1393 (1991).

    Article  CAS  Google Scholar 

  36. Hansen, R.E. & Winther, J.R. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 394, 147–158 (2009).

    Article  CAS  Google Scholar 

  37. Salsbury, F.R. Jr, Knutson, S.T., Poole, L.B. & Fetrow, J.S. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci. 17, 299–312 (2008).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C.L. Cooney (Massachusetts Institute of Technology) for providing a modified form of plasmid pEAT8 (see Online Methods), originally from M.H. Yu (Korea Institute of Science and Technology). We acknowledge S. Eyles and the University of Massachusetts, Amherst, mass spectrometry facility for ESI-MS results, and we thank E. Clerico, D. Hebert and A. Gershenson for stimulating discussions and critical reading of the manuscript. This work was supported by grants from the US National Institutes of Health (OD-00045 to L.M.G.) and the Alpha-1 Foundation (to B.K.).

Author information

Authors and Affiliations

Authors

Contributions

B.K. and L.M.G. designed the experiments, B.K. carried out the experiments, B.K. and L.M.G. interpreted results and B.K. and L.M.G. wrote the manuscript.

Corresponding author

Correspondence to Lila M Gierasch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 5828 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, B., Gierasch, L. Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization. Nat Struct Mol Biol 18, 222–226 (2011). https://doi.org/10.1038/nsmb.1976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing