Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain

Abstract

Incorrectly folded states transiently populated during the protein folding process are potentially prone to aggregation and have been implicated in a range of misfolding disorders that include Alzheimer's and Parkinson's diseases. Despite their importance, however, the structures of these states and the mechanism of their formation have largely escaped detailed characterization because of their short-lived nature. Here we present the structures of all the major states involved in the folding process of a PDZ domain, which include an off-pathway misfolded intermediate. By using a combination of kinetic, protein engineering, biophysical and computational techniques, we show that the misfolded intermediate is characterized by an alternative packing of the N-terminal β-hairpin onto an otherwise native-like scaffold. Our results suggest a mechanism of formation of incorrectly folded transient compact states by which misfolded structural elements are assembled together with more extended native-like regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Folding kinetics of D1pPDZ.
Figure 2: Comparison between the chevron plots of D1pPDZ and of six representative mutants (Y169A, A183G, V198A, L210A, S211G and L245A).
Figure 3: Structural distribution of the ΦI values in the misfolding reaction of D1pPDZ.
Figure 4: Comparison of the structures of the intermediate and the native states.
Figure 5: Comparison of the spectroscopic and functional properties of D1pPDZ (gray) and three mutants that populate the intermediate state, V163A (blue), A193G (red) and L231A (black).
Figure 6: Comparison of the TSN and TSI structures of D1pPDZ.
Figure 7: Comparison of the solvent exposure of the aggregation-prone regions of D1pPDZ in the native and in the misfolded intermediate case.

Similar content being viewed by others

References

  1. Fersht, A.R. Structure and Mechanism in Protein Science (Freeman, New York, 1999).

  2. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  Google Scholar 

  3. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  4. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  5. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  6. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  Google Scholar 

  7. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003).

    Article  CAS  Google Scholar 

  8. Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

    Article  CAS  Google Scholar 

  9. Chiti, F. & Dobson, C.M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5, 15–22 (2009).

    Article  CAS  Google Scholar 

  10. Elad, N. et al. Topologies of a substrate protein bound to the chaperonin GroEL. Mol. Cell 26, 415–426 (2007).

    Article  CAS  Google Scholar 

  11. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  Google Scholar 

  12. Horwich, A.L. & Fenton, W.A. Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q. Rev. Biophys. 42, 83–116 (2009).

    Article  CAS  Google Scholar 

  13. Matouschek, A., Kellis, J.T. Jr., Serrano, L., Bycroft, M. & Fersht, A.R. Transient folding intermediates characterized by protein engineering. Nature 346, 440–445 (1990).

    Article  CAS  Google Scholar 

  14. Capaldi, A.P., Kleanthous, C. & Radford, S.E. Im7 folding mechanism: misfolding on a path to the native state. Nat. Struct. Biol. 9, 209–216 (2002).

    CAS  Google Scholar 

  15. Friel, C.T., Smith, D.A., Vendruscolo, M., Gsponer, J. & Radford, S.E. The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Nat. Struct. Mol. Biol. 16, 318–324 (2009).

    Article  CAS  Google Scholar 

  16. Ivarsson, Y., Travaglini-Allocatelli, C., Brunori, M. & Gianni, S. Engineered symmetric connectivity of secondary structure elements highlights malleability of protein folding pathways. J. Am. Chem. Soc. 131, 11727–11733 (2009).

    Article  CAS  Google Scholar 

  17. Korzhnev, D.M., Religa, T.L., Banachewicz, W., Fersht, A.R. & Kay, L.E. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 1312–1316 (2010).

    Article  CAS  Google Scholar 

  18. Religa, T.L., Markson, J.S., Mayor, U., Freund, S.M. & Fersht, A.R. Solution structure of a protein denatured state and folding intermediate. Nature 437, 1053–1056 (2005).

    Article  CAS  Google Scholar 

  19. Wu, Y., Vadrevu, R., Kathuria, S., Yang, X.Y. & Matthews, C.R. A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein. J. Mol. Biol. 366, 1624–1638 (2007).

    Article  CAS  Google Scholar 

  20. Nabuurs, S.M., Westphal, A.H. & van Mierlo, C.P.M. Noncooperative formation of the off-pathway molten globule during folding of the alpha-beta parallel protein apoflavodoxin. J. Am. Chem. Soc. 131, 2739–2746 (2009).

    Article  CAS  Google Scholar 

  21. Ivarsson, Y., Travaglini-Allocatelli, C., Morea, V., Brunori, M. & Gianni, S. The folding pathway of an engineered circularly permuted PDZ domain. Protein Eng. Des. Sel. 21, 155–160 (2008).

    Article  CAS  Google Scholar 

  22. Morais Cabral, J.H. et al. Crystal structure of a PDZ domain. Nature 382, 649–652 (1996).

    Article  CAS  Google Scholar 

  23. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    Article  CAS  Google Scholar 

  24. Liao, D.I., Qian, J., Chisholm, D.A., Jordan, D.B. & Diner, B.A. Crystal structures of the photosystem II D1 C-terminal processing protease. Nat. Struct. Biol. 7, 749–753 (2000).

    Article  CAS  Google Scholar 

  25. Calosci, N. et al. Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl. Acad. Sci. USA 105, 19241–19246 (2008).

    Article  CAS  Google Scholar 

  26. Chi, C.N. et al. A conserved folding mechanism for PDZ domains. FEBS Lett. 581, 1109–1113 (2007).

    Article  CAS  Google Scholar 

  27. Gianni, S. et al. Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng. Des. Sel. 18, 389–395 (2005).

    Article  CAS  Google Scholar 

  28. Gianni, S. et al. A PDZ domain recapitulates a unifying mechanism for protein folding. Proc. Natl. Acad. Sci. USA 104, 128–133 (2007).

    Article  CAS  Google Scholar 

  29. Ivarsson, Y. et al. An on-pathway intermediate in the folding of a PDZ domain. J. Biol. Chem. 282, 8568–8572 (2007).

    Article  CAS  Google Scholar 

  30. Jemth, P. & Gianni, S. PDZ domains: folding and binding. Biochemistry 46, 8701–8708 (2007).

    Article  CAS  Google Scholar 

  31. Ivarsson, Y., Travaglini-Allocatelli, C., Brunori, M. & Gianni, S. Folding and misfolding in a naturally occurring circularly permuted PDZ domain. J. Biol. Chem. 283, 8954–8960 (2008).

    Article  CAS  Google Scholar 

  32. Fersht, A.R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  Google Scholar 

  33. Fersht, A.R. & Sato, S. Phi-value analysis and the nature of protein-folding transition states. Proc. Natl. Acad. Sci. USA 101, 7976–7981 (2004).

    Article  CAS  Google Scholar 

  34. Mayor, U. et al. The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421, 863–867 (2003).

    Article  CAS  Google Scholar 

  35. Li, L., Mirny, L.A. & Shakhnovich, E.I. Kinetics, thermodynamics and evolution of non-native interactions in a protein folding nucleus. Nat. Struct. Biol. 7, 336–342 (2000).

    Article  CAS  Google Scholar 

  36. Ozkan, S.B., Bahar, I. & Dill, K.A. Transition states and the meaning of Phi-values in protein folding kinetics. Nat. Struct. Biol. 8, 765–769 (2001).

    Article  CAS  Google Scholar 

  37. Ventura, S. et al. Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat. Struct. Biol. 9, 485–493 (2002).

    Article  CAS  Google Scholar 

  38. Paci, E., Vendruscolo, M., Dobson, C.M. & Karplus, M. Determination of a transition state at atomic resolution from protein engineering data. J. Mol. Biol. 324, 151–163 (2002).

    Article  CAS  Google Scholar 

  39. Vendruscolo, M., Paci, E., Dobson, C.M. & Karplus, M. Three key residues form a critical contact network in a protein folding transition state. Nature 409, 641–645 (2001).

    Article  CAS  Google Scholar 

  40. Gsponer, J. et al. Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7. Proc. Natl. Acad. Sci. USA 103, 99–104 (2006).

    Article  CAS  Google Scholar 

  41. Salvatella, X., Dobson, C.M., Fersht, A.R. & Vendruscolo, M. Determination of the folding transition states of barnase by using PhiI-value-restrained simulations validated by double mutant PhiIJ-values. Proc. Natl. Acad. Sci. USA 102, 12389–12394 (2005).

    Article  CAS  Google Scholar 

  42. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  43. Ferreiro, D.U., Hegler, J.A., Komives, E.A. & Wolynes, P.G. Localizing frustration in native proteins and protein assemblies. Proc. Natl. Acad. Sci. USA 104, 19819–19824 (2007).

    Article  CAS  Google Scholar 

  44. Sutto, L., Lätzer, J., Hegler, J.A., Ferreiro, D.U. & Wolynes, P.G. Consequences of localized frustration for the folding mechanism of the IM7 protein. Proc. Natl. Acad. Sci. USA 104, 19825–19830 (2007).

    Article  CAS  Google Scholar 

  45. Tartaglia, G.G. et al. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol. 380, 425–436 (2008).

    Article  CAS  Google Scholar 

  46. Hubner, I.A., Lindberg, M., Haglund, E., Oliveberg, M. & Shakhnovich, E.I. Common motifs and topological effects in the protein folding transition state. J. Mol. Biol. 359, 1075–1085 (2006).

    Article  CAS  Google Scholar 

  47. Lindberg, M., Tangrot, J. & Oliveberg, M. Complete change of the protein folding transition state upon circular permutation. Nat. Struct. Biol. 9, 818–822 (2002).

    CAS  PubMed  Google Scholar 

  48. Lindberg, M.O. & Oliveberg, M. Malleability of protein folding pathways: a simple reason for complex behaviour. Curr. Opin. Struct. Biol. 17, 21–29 (2007).

    Article  CAS  Google Scholar 

  49. Lindberg, M.O. et al. Folding of circular permutants with decreased contact order: general trend balanced by protein stability. J. Mol. Biol. 314, 891–900 (2001).

    Article  CAS  Google Scholar 

  50. Klimov, D.K. & Thirumalai, D. Symmetric connectivity of secondary structure elements enhances the diversity of folding pathways. J. Mol. Biol. 353, 1171–1186 (2005).

    Article  CAS  Google Scholar 

  51. Jemth, P. et al. Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation. Proc. Natl. Acad. Sci. USA 101, 6450–6455 (2004).

    Article  CAS  Google Scholar 

  52. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Italian Ministero dell'Istruzione dell'Università e della Ricerca (2007B57EAB_004, 20074TJ3ZB_005, RBRN07BMCT_007) (S.G., Y.I., C.T.-A., M.B.), the Wenner Green Foundations (Y.I.), the Istituto Pasteur-Fondazione Cenci Bolognetti (Y.I.), European Molecular Biology Organization (Y.I.), Engineering and Physical Sciences Research Council (A.D.S.), Biotechnology and Biological Sciences Research Council (M.V.) and the Royal Society (M.V.).

Author information

Authors and Affiliations

Authors

Contributions

S.G., Y.I., C.T.-A. and M.B. conceived and designed the experimental work; A.D.S. and M.V. conceived and designed the computational work; Y.I. expressed and purified the protein samples; S.G. and Y.I. conducted the experiments; A.D.S. did the simulations; S.G., Y.I., A.D.S., C.T.-A., M.B. and M.V. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Michele Vendruscolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianni, S., Ivarsson, Y., De Simone, A. et al. Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain. Nat Struct Mol Biol 17, 1431–1437 (2010). https://doi.org/10.1038/nsmb.1956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing