Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural polymorphism in F-actin

Abstract

Actin has maintained an exquisite degree of sequence conservation over large evolutionary distances for reasons that are not understood. The desire to explain phenomena from muscle contraction to cytokinesis in mechanistic detail has driven the generation of an atomic model of the actin filament (F-actin). Here we use electron cryomicroscopy to show that frozen-hydrated actin filaments contain a multiplicity of different structural states. We show (at 10 Å resolution) that subdomain 2 can be disordered and can make multiple contacts with the C terminus of a subunit above it. We link a number of disease-causing mutations in the human ACTA1 gene to the most structurally dynamic elements of actin. Because F-actin is structurally polymorphic, it cannot be described using only one atomic model and must be understood as an ensemble of different states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Six structural modes of actin found in frozen-hydrated actin filaments.
Figure 2: D loop of the lower subunit makes polymorphic interactions with the upper protomer.
Figure 3: D loop may work as an allosteric switch.
Figure 4: The structural states of SD2 and the ATP-binding cleft are coupled.
Figure 5: Mutations in the ACTA1 gene causing human disease map to either the intersubunit contacts or mobile elements of actin.

Similar content being viewed by others

References

  1. Feuer, G., Molnar, F., Pettko, E. & Straub, F.B. Studies on the composition and polymerization of actin. Hung. Acta Physiol. 1, 150–163 (1948).

    CAS  PubMed  Google Scholar 

  2. Pollard, T.D. & Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  3. Cooke, R. The mechanism of muscle contraction. CRC Crit. Rev. Biochem. 21, 53–118 (1986).

    Article  CAS  Google Scholar 

  4. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).

    Article  CAS  Google Scholar 

  5. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990).

    Article  CAS  Google Scholar 

  6. Otterbein, L.R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711 (2001).

    Article  CAS  Google Scholar 

  7. Rould, M.A., Wan, Q., Joel, P.B., Lowey, S. & Trybus, K.M. Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states. J. Biol. Chem. 281, 31909–31919 (2006).

    Article  CAS  Google Scholar 

  8. Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  CAS  Google Scholar 

  9. Lorenz, M., Popp, D. & Holmes, K.C. Refinement of the F-actin model against x-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836 (1993).

    Article  CAS  Google Scholar 

  10. Tirion, M.M., ben-Avraham, D., Lorenz, M. & Holmes, K.C. Normal modes as refinement parameters for the F-actin model. Biophys. J. 68, 5–12 (1995).

    Article  CAS  Google Scholar 

  11. Oda, T., Iwasa, M., Aihara, T., Maeda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).

    Article  CAS  Google Scholar 

  12. Egelman, E.H., Francis, N. & DeRosier, D.J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982).

    Article  CAS  Google Scholar 

  13. Galkin, V.E., VanLoock, M.S., Orlova, A. & Egelman, E.H. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin's sequence and structure. Curr. Biol. 12, 570–575 (2002).

    Article  CAS  Google Scholar 

  14. Schmid, M.F., Sherman, M.B., Matsudaira, P. & Chiu, W. Structure of the acrosomal bundle. Nature 431, 104–107 (2004).

    Article  CAS  Google Scholar 

  15. Kim, E. & Reisler, E. Intermolecular coupling between loop 38–52 and the c-terminus in actin filaments. Biophys. J. 71, 1914–1919 (1996).

    Article  CAS  Google Scholar 

  16. Kim, E. et al. Cross-linking constraints on F-actin structure. J. Mol. Biol. 299, 421–429 (2000).

    Article  CAS  Google Scholar 

  17. Heintz, D., Kany, H. & Kalbitzer, H.R. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy. Biochemistry 35, 12686–12693 (1996).

    Article  CAS  Google Scholar 

  18. Orlova, A., Yu, X. & Egelman, E.H. Three-dimensional reconstruction of a co-complex of F-actin with antibody Fab fragments to actin's amino-terminus. Biophys. J. 66, 276–285 (1994).

    Article  CAS  Google Scholar 

  19. Oztug Durer, Z.A., Diraviyam, K., Sept, D., Kudryashov, D.S. & Reisler, E. F-actin structure destabilization and DNase I binding loop: fluctuations mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin. J. Mol. Biol. 395, 544–557 (2010).

    Article  CAS  Google Scholar 

  20. Doolittle, R.F. The origins and evolution of eukaryotic proteins. Phil. Trans. R. Soc. Lond. B 349, 235–240 (1995).

    Article  CAS  Google Scholar 

  21. Sheterline, P., Clayton, J. & Sparrow, J. Actin. Protein Profile 2, 1–103 (1995).

    CAS  PubMed  Google Scholar 

  22. Derman, A.I. et al. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol. Microbiol. 73, 534–552 (2009).

    Article  CAS  Google Scholar 

  23. Egelman, E.H. Actin allostery again? Nat. Struct. Biol. 8, 735–736 (2001).

    Article  CAS  Google Scholar 

  24. McCormack, E.A., Llorca, O., Carrascosa, J.L., Valpuesta, J.M. & Willison, K.R. Point mutations in a hinge linking the small and large domains of beta-actin result in trapped folding intermediates bound to cytosolic chaperonin CCT. J. Struct. Biol. 135, 198–204 (2001).

    Article  CAS  Google Scholar 

  25. Drummond, D.A., Bloom, J.D., Adami, C., Wilke, C.O. & Arnold, F.H. Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102, 14338–14343 (2005).

    Article  CAS  Google Scholar 

  26. Strzelecka-Gołaszewska, H., Mossakowska, M., Wozniak, A., Moraczewska, J. & Nakayama, H. Long-range conformational effects of proteolytic removal of the last three residues of actin. Biochem. J. 307, 527–534 (1995).

    Article  Google Scholar 

  27. Kim, E., Motoki, M., Seguro, K., Muhlrad, A. & Reisler, E. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41. Biophys. J. 69, 2024–2032 (1995).

    Article  CAS  Google Scholar 

  28. Süel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).

    Article  Google Scholar 

  29. Drummond, D.R., Peckham, M., Sparrow, J.C. & White, D.C. Alteration in crossbridge kinetics caused by mutations in actin. Nature 348, 440–442 (1990).

    Article  CAS  Google Scholar 

  30. Prochniewicz, E. & Yanagida, T. Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility. J. Mol. Biol. 216, 761–772 (1990).

    Article  CAS  Google Scholar 

  31. Kim, E. et al. Intrastrand cross-linked actin between Gln-41 and Cys-374. III. Inhibition of motion and force generation with myosin. Biochemistry 37, 17801–17809 (1998).

    Article  CAS  Google Scholar 

  32. Schwyter, D.H., Kron, S.J., Toyoshima, Y.Y., Spudich, J.A. & Reisler, E. Subtilisin cleavage of actin inhibits in vitro sliding movement of actin filaments over myosin. J. Cell Biol. 111, 465–470 (1990).

    Article  CAS  Google Scholar 

  33. Egelman, E.H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).

    Article  CAS  Google Scholar 

  34. Kudryashov, D.S. et al. The crystal structure of a cross-linked actin dimer suggests a detailed molecular interface in F-actin. Proc. Natl. Acad. Sci. USA 102, 13105–13110 (2005).

    Article  CAS  Google Scholar 

  35. Stokasimov, E., McKane, M. & Rubenstein, P.A. Role of intermonomer ionic bridges in the stabilization of the actin filament. J. Biol. Chem. 283, 34844–34854 (2008).

    Article  CAS  Google Scholar 

  36. Dominguez, R. Actin-binding proteins—a unifying hypothesis. Trends Biochem. Sci. 29, 572–578 (2004).

    Article  CAS  Google Scholar 

  37. Kim, E., Miller, C.J. & Reisler, E. Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal α-actin. Biochemistry 35, 16566–16572 (1996).

    Article  CAS  Google Scholar 

  38. McKane, M., Wen, K.K., Meyer, A. & Rubenstein, P.A. Effect of the substitution of muscle actin-specific subdomain 1 and 2 residues in yeast actin on actin function. J. Biol. Chem. 281, 29916–29928 (2006).

    Article  CAS  Google Scholar 

  39. Orlova, A. & Egelman, E.H. A conformational change in the actin subunit can change the flexibility of the actin filament. J. Mol. Biol. 232, 334–341 (1993).

    Article  CAS  Google Scholar 

  40. Prochniewicz, E., Katayama, E., Yanagida, T. & Thomas, D.D. Cooperativity in F-actin: chemical modifications of actin monomers affect the functional interactions of myosin with unmodified monomers in the same actin filament. Biophys. J. 65, 113–123 (1993).

    Article  CAS  Google Scholar 

  41. Drewes, G. & Faulstich, H. Cooperative effects on filament stability in actin modified at the C-terminus by substitution or truncation. Eur. J. Biochem. 212, 247–253 (1993).

    Article  CAS  Google Scholar 

  42. Orlova, A., Prochniewicz, E. & Egelman, E.H. Structural dynamics of F-actin. II. Co-operativity in structural transitions. J. Mol. Biol. 245, 598–607 (1995).

    Article  CAS  Google Scholar 

  43. Miki, M., Wahl, P. & Auchet, J.-C. Fluorescence anisotropy of labeled F-actin: influence of divalent cations on the interaction between F-actin and myosin heads. Biochemistry 21, 3661–3665 (1982).

    Article  CAS  Google Scholar 

  44. Muhlrad, A., Cheung, P., Phan, B., Miller, C. & Reisler, E. Dynamic properties of actin. Structural changes induced by beryllium fluoride. J. Biol. Chem. 269, 11852–11858 (1994).

    CAS  PubMed  Google Scholar 

  45. Oosawa, F., Fujime, S., Ishiwata, S. & Mihashi, K. Dynamic property of F-actin and thin filament. Cold Spring Harb. Symp. Quant. Biol. 37, 277–285 (1973).

    Article  CAS  Google Scholar 

  46. Laing, N.G. et al. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum. Mutat. 30, 1267–1277 (2009).

    Article  CAS  Google Scholar 

  47. Nowak, K.J. et al. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann. Neurol. 61, 175–184 (2007).

    Article  CAS  Google Scholar 

  48. Sparrow, J.C. et al. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul. Disord. 13, 519–531 (2003).

    Article  Google Scholar 

  49. Hennessey, E.S., Drummond, D.R. & Sparrow, J.C. Molecular genetics of actin function. Biochem. J. 291, 657–671 (1993).

    Article  CAS  Google Scholar 

  50. Feng, J.J. & Marston, S. Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul. Disord. 19, 6–16 (2009).

    Article  Google Scholar 

  51. Morín, M. et al. In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum. Mol. Genet. 18, 3075–3089 (2009).

    Article  Google Scholar 

  52. Ilkovski, B. et al. Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum. Mol. Genet. 13, 1727–1743 (2004).

    Article  CAS  Google Scholar 

  53. Chik, J.K., Lindberg, U. & Schutt, C.E. The structure of an open state of β-actin at 2.65 Ångstrom resolution. J. Mol. Biol. 263, 607–623 (1996).

    Article  CAS  Google Scholar 

  54. Khaitlina, S.Y. & Strzelecka-Golaszewska, H. Role of the DNase-I-binding loop in dynamic properties of actin filament. Biophys. J. 82, 321–334 (2002).

    Article  CAS  Google Scholar 

  55. Kuznetsova, I., Antropova, O., Turoverov, K. & Khaitlina, S. Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase I-binding loop: energy transfer from tryptophan to AEDANS. FEBS Lett. 383, 105–108 (1996).

    Article  CAS  Google Scholar 

  56. Kuang, B. & Rubenstein, P.A. The effects of severely decreased hydrophobicity in a subdomain 3/4 loop on the dynamics and stability of yeast G-actin. J. Biol. Chem. 272, 4412–4418 (1997).

    Article  CAS  Google Scholar 

  57. McKane, M. et al. A mammalian actin substitution in yeast actin (H372R) causes a suppressible mitochondria/vacuole phenotype. J. Biol. Chem. 280, 36494–36501 (2005).

    Article  CAS  Google Scholar 

  58. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  59. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  60. Galkin, V.E., Orlova, A., Cherepanova, O., Lebart, M.C. & Egelman, E.H. High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex. Proc. Natl. Acad. Sci. USA 105, 1494–1498 (2008).

    Article  CAS  Google Scholar 

  61. Schröder, G.F., Brunger, A.T. & Levitt, M. Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15, 1630–1641 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Institutes of Health (NIH GM081303 to E.H.E.).

Author information

Authors and Affiliations

Authors

Contributions

A.O. prepared specimens and EM; V.E.G. analyzed images, made classifications, created three-dimensional reconstructions, and built preliminary models; R.S. built and refined models; V.E.G., A.O. and E.H.E. discussed the data and wrote the paper.

Corresponding authors

Correspondence to Vitold E Galkin or Edward H Egelman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 834 kb)

Supplementary Video 1

When the power spectra derived from the raw images of mode 1 and mode 5 classes are superimposed, significant changes in the position and relative intensities of layer line maxima are evident. (GIF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galkin, V., Orlova, A., Schröder, G. et al. Structural polymorphism in F-actin. Nat Struct Mol Biol 17, 1318–1323 (2010). https://doi.org/10.1038/nsmb.1930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing