Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The program for processing newly synthesized histones H3.1 and H4

Abstract

The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone post-translational modifications. To define the events by which naive pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the full gamut of histone H3.1–containing complexes from human cytoplasmic fractions and identified their associated histone post-translational modifications. Through reconstitution assays, biophysical analyses and live cell manipulations, we describe in detail this series of events, namely the assembly of H3–H4 dimers, the acetylation of histones by the HAT1 holoenzyme and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular distribution of H3.1-containing complexes.
Figure 2: Purification of eH3.1 from cytosolic extracts.
Figure 3: sNASP interacts with HAT1–RbAp46 and ASF1B through histone intermediates.
Figure 4: sNASP homodimerizes but binds H3–H4 heterodimers.
Figure 5: Importin-4 and ASF1B function downstream of sNASP, tNASP, and HAT1 in vivo.
Figure 6: Conservation of the H3–H4 pre-deposition pathway in Saccharomyces cerevisiae.
Figure 7: Model for nuclear import of pre-deposition replication-dependent histones.

Similar content being viewed by others

References

  1. Eickbush, T.H. & Moudrianakis, E.N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17, 4955–4964 (1978).

    Article  CAS  Google Scholar 

  2. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  3. Campos, E.I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    Article  CAS  Google Scholar 

  4. Hake, S.B. & Allis, C.D. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc. Natl. Acad. Sci. USA 103, 6428–6435 (2006).

    Article  CAS  Google Scholar 

  5. Koessler, H., Doenecke, D. & Albig, W. Aberrant expression pattern of replication-dependent histone h3 subtype genes in human tumor cell lines. DNA Cell Biol. 22, 233–241 (2003).

    Article  CAS  Google Scholar 

  6. Sogo, J.M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).

    Article  CAS  Google Scholar 

  7. Annunziato, A.T. Split decision: what happens to nucleosomes during DNA replication? J. Biol. Chem. 280, 12065–12068 (2005).

    Article  CAS  Google Scholar 

  8. Xu, M. et al. Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    Article  CAS  Google Scholar 

  9. Gruss, C., Wu, J., Koller, T. & Sogo, J.M. Disruption of the nucleosomes at the replication fork. EMBO J. 12, 4533–4545 (1993).

    Article  CAS  Google Scholar 

  10. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  Google Scholar 

  11. Benson, L.J. et al. Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J. Biol. Chem. 281, 9287–9296 (2006).

    Article  CAS  Google Scholar 

  12. English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E. & Tyler, J.K. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3–H4 heterotetramer on DNA. Biochemistry 44, 13673–13682 (2005).

    Article  CAS  Google Scholar 

  13. English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  Google Scholar 

  14. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    Article  CAS  Google Scholar 

  15. Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931 (2007).

    Article  CAS  Google Scholar 

  16. Jasencakova, Z. et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell 37, 736–743 (2010).

    Article  CAS  Google Scholar 

  17. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8, 96–108 (1998).

    Article  CAS  Google Scholar 

  18. Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006).

    Article  CAS  Google Scholar 

  19. Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15–25 (1989).

    Article  CAS  Google Scholar 

  20. Tyler, J.K. et al. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Cell. Biol. 21, 6574–6584 (2001).

    Article  CAS  Google Scholar 

  21. Mello, J.A. et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep. 3, 329–334 (2002).

    Article  CAS  Google Scholar 

  22. Crampton, C.F., Moore, S. & Stein, W.H. Chromatographic fractionation of calf thymus histone. J. Biol. Chem. 215, 787–801 (1955).

    CAS  PubMed  Google Scholar 

  23. Han, C. et al. HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain. Biochem. Biophys. Res. Commun. 353, 280–285 (2007).

    Article  CAS  Google Scholar 

  24. Richardson, R.T. et al. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. J. Biol. Chem. 275, 30378–30386 (2000).

    Article  CAS  Google Scholar 

  25. Alekseev, O.M., Widgren, E.E., Richardson, R.T. & O'Rand, M.G. Association of NASP with HSP90 in mouse spermatogenic cells: stimulation of ATPase activity and transport of linker histones into nuclei. J. Biol. Chem. 280, 2904–2911 (2005).

    Article  CAS  Google Scholar 

  26. Song, J.J., Garlick, J.D. & Kingston, R.E. Structural basis of histone H4 recognition by p55. Genes Dev. 22, 1313–1318 (2008).

    Article  CAS  Google Scholar 

  27. Murzina, N.V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16, 1077–1085 (2008).

    Article  CAS  Google Scholar 

  28. Han, J., Zhou, H., Li, Z., Xu, R.M. & Zhang, Z. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J. Biol. Chem. 282, 28587–28596 (2007).

    Article  CAS  Google Scholar 

  29. Finn, R.M., Browne, K., Hodgson, K.C. & Ausio, J. sNASP, a histone H1-specific eukaryotic chaperone dimer that facilitates chromatin assembly. Biophys. J. 95, 1314–1325 (2008).

    Article  CAS  Google Scholar 

  30. Andrews, A.J., Downing, G., Brown, K., Park, Y.J. & Luger, K. A thermodynamic model for Nap1-histone interactions. J. Biol. Chem. 283, 32412–32418 (2008).

    Article  CAS  Google Scholar 

  31. Vistica, J. et al. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal. Biochem. 326, 234–256 (2004).

    Article  CAS  Google Scholar 

  32. Dunleavy, E.M. et al. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol. Cell 28, 1029–1044 (2007).

    Article  CAS  Google Scholar 

  33. Poveda, A. et al. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J. Biol. Chem. 279, 16033–16043 (2004).

    Article  CAS  Google Scholar 

  34. Fillingham, J. et al. Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol. Cell. Biol. 28, 4342–4353 (2008).

    Article  CAS  Google Scholar 

  35. Sundin, B.A., Chiu, C.H., Riffle, M., Davis, T.N. & Muller, E.G. Localization of proteins that are coordinately expressed with Cln2 during the cell cycle. Yeast 21, 793–800 (2004).

    Article  CAS  Google Scholar 

  36. Mousson, F. et al. Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc. Natl. Acad. Sci. USA 102, 5975–5980 (2005).

    Article  CAS  Google Scholar 

  37. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  Google Scholar 

  38. Wang, H., Walsh, S.T. & Parthun, M.R. Expanded binding specificity of the human histone chaperone NASP. Nucleic Acids Res. 36, 5763–5772 (2008).

    Article  CAS  Google Scholar 

  39. Welch, J.E., Zimmerman, L.J., Joseph, D.R. & O'Rand, M.G. Characterization of a sperm-specific nuclear autoantigenic protein. I. Complete sequence and homology with the Xenopus protein, N1/N2. Biol. Reprod. 43, 559–568 (1990).

    Article  CAS  Google Scholar 

  40. Richardson, R.T. et al. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. J. Biol. Chem. 281, 21526–21534 (2006).

    Article  CAS  Google Scholar 

  41. Nishioka, K. & Reinberg, D. Methods and tips for the purification of human histone methyltransferases. Methods 31, 49–58 (2003).

    Article  CAS  Google Scholar 

  42. Dignam, J.D., Martin, P.L., Shastry, B.S. & Roeder, R.G. Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598 (1983).

    Article  CAS  Google Scholar 

  43. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  44. Pungaliya, P. et al. TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J. Proteome Res. 6, 3918–3923 (2007).

    Article  CAS  Google Scholar 

  45. Craig, R., Cortens, J.P. & Beavis, R.C. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3, 1234–1242 (2004).

    Article  CAS  Google Scholar 

  46. Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  Google Scholar 

  47. Trojer, P. et al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J. Biol. Chem. 284, 8395–8405 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Howard Hughes Medical Institute, by US National Institutes of Health grants GM064844 and R37GM037120 (D.R.), by the Natural Sciences and Engineering Research Council of Canada (E.I.C. and W.-H.W.K.), the Canadian Cancer Society Research Institute (J.F.G.) and by the Deutsche Akademie der Naturforscher Leopoldina (Leopoldina Fellowship Program, LPDS 2009-5, P.V.). The eH3.1 HeLa S3 cells were kindly provided by H. Tagami and G. Almouzni (Institut Curie). The HAT1–RbAp46, WT ASF1B and V94R Asf1 constructs were kind gifts from B. Stillman (Cold Spring Harbor Laboratory), H. Silljé (Max Planck Institute) and C. Mann (CEA Saclay), respectively. The baculoviruses expressing human HAT1 and RbAp46 were kindly provided by R. Kingston (Harvard Medical School). We also thank S. Mehta and S. Kim for technical support with tissue culture, G. Zhong for help with yeast TAP purification and J. Zhang for a copious amount of histones. We are grateful to L. Vales for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.I.C. performed the tissue culture–related work and biochemical purification of eH3.1, sNASP and ASF1B; protein interaction and enzymatic assays, with assistance from Z.G.; subcloning and mutagenesis; cross-linking experiments, with the assistance of P.V.; AUC runs, with the assistance of L.A.D.; and RNAi experiments. J.F. performed the work in S. cerevisiae with assistance from W.-H.W.K. and H.S. G.L. cloned sNASP and generated stable sNASP clones. H.Z. performed the mass spectrometry analyses. Experiments were performed under the supervision of D.R. and J.F.G. The manuscript was written by E.I.C. and D.R. with assistance from the other authors.

Corresponding author

Correspondence to Danny Reinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 3656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, E., Fillingham, J., Li, G. et al. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17, 1343–1351 (2010). https://doi.org/10.1038/nsmb.1911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing