Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of Rev-erbα bound to N-CoR reveals a unique mechanism of nuclear receptor–co-repressor interaction

Abstract

Repression of gene transcription by the nuclear receptor Rev-erbα plays an integral role in the core molecular circadian clock. We report the crystal structure of a nuclear receptor–co-repressor (N-CoR) interaction domain 1 (ID1) peptide bound to truncated human Rev-erbα ligand-binding domain (LBD). The ID1 peptide forms an unprecedented antiparallel β-sheet with Rev-erbα, as well as an α-helix similar to that seen in nuclear receptor ID2 crystal structures but out of register by four residues. Comparison with the structure of Rev-erbβ bound to heme indicates that ID1 peptide and heme induce substantially different conformational changes in the LBD. Although heme is involved in Rev-erb repression, the structure suggests that Rev-erbα could also mediate repression via ID1 binding in the absence of heme. The previously uncharacterized secondary structure induced by ID1 peptide binding advances our understanding of nuclear receptor–co-repressor interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-CoR and SMRT sequence alignment templates.
Figure 2: N-CoR ID1 bound to Rev-erbα compared to SMRT ID2– and N-CoR ID2–bound crystal structures.
Figure 3: Rev-erbα repression requires the IxxII CoRNR box motif of N-CoR.
Figure 4: Structural changes for N-CoR-bound Rev-erbα versus ligand-free Rev-erbβ.
Figure 5: Structural changes for N-CoR–bound Rev-erbα versus heme-bound Rev-erbβ.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Desvergne, B., Michalik, L. & Wahli, W. Transcriptional regulation of metabolism. Physiol. Rev. 86, 465–514 (2006).

    Article  CAS  Google Scholar 

  2. Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  3. Teboul, M., Guillaumond, F., Grechez-Cassiau, A. & Delaunay, F. Minireview: the nuclear hormone receptor family round the clock. Mol. Endocrinol. 22, 2573–2582 (2008).

    Article  CAS  Google Scholar 

  4. Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81, 1269–1304 (2001).

    Article  CAS  Google Scholar 

  5. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  6. Hu, X. & Lazar, M.A. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol. Metab. 11, 6–10 (2000).

    Article  CAS  Google Scholar 

  7. Privalsky, M.L. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu. Rev. Physiol. 66, 315–360 (2004).

    Article  CAS  Google Scholar 

  8. Moras, D. & Gronemeyer, H. The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell Biol. 10, 384–391 (1998).

    Article  CAS  Google Scholar 

  9. Hu, X. & Lazar, M.A. The CoRNR motif contols the recruitment of corepressors to nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  Google Scholar 

  10. Nagy, L. et al. Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev. 13, 3209–3216 (1999).

    Article  CAS  Google Scholar 

  11. Perissi, V. et al. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev. 13, 3198–3208 (1999).

    Article  CAS  Google Scholar 

  12. Webb, P. et al. The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). Mol. Endocrinol. 14, 1976–1985 (2000).

    Article  CAS  Google Scholar 

  13. Xu, H.E. et al. Structural basis for antagonist-mediated recruitment of nuclear corepressors by PPARalpha. Nature 415, 813–817 (2002).

    Article  CAS  Google Scholar 

  14. Wang, L. et al. X-ray crystal structures of the estrogen-related receptor-Î3 ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J. Biol. Chem. 281, 37773–37781 (2006).

    Article  CAS  Google Scholar 

  15. Madauss, K.P. et al. A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol. Endocrinol. 21, 1066–1081 (2007).

    Article  CAS  Google Scholar 

  16. Benko, S., Love, J.D., Beládi, M., Schwabe, J.W.R. & Nagy, L. Molecular determinants of the balance between co-repressor and co-activator recruitment to the retinoic acid receptor. J. Biol. Chem. 278, 43797–43806 (2003).

    Article  CAS  Google Scholar 

  17. Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

    Article  CAS  Google Scholar 

  18. Raghuram, S. Identification of heme as the ligand for the orphan nuclear receptors REV-ERB[agr] and REV-ERB. Nat. Struct. Mol. Biol. 14, 1207–1213 (2007).

    Article  CAS  Google Scholar 

  19. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  Google Scholar 

  20. Yin, L. & Lazar, M.A. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19, 1452–1459 (2005).

    Article  CAS  Google Scholar 

  21. Yin, L. Rev-erb[agr], a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

    Article  CAS  Google Scholar 

  22. Wang, J., Yin, L. & Lazar, M.A. The orphan nuclear receptor Rev-erb alpha regulates circadian expression of plasminogen activator inhibitor type 1. J. Biol. Chem. 281, 33842–33848 (2006).

    Article  CAS  Google Scholar 

  23. Raspe, E. et al. Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43, 2172–2179 (2002).

    Article  CAS  Google Scholar 

  24. Coste, H. & Rodriguez, J.C. Orphan nuclear hormone receptor Rev-erbα regulates the human apolipoprotein CIII promoter. J. Biol. Chem. 277, 27120–27129 (2002).

    Article  CAS  Google Scholar 

  25. Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135, 689–698 (2008).

    Article  CAS  Google Scholar 

  26. Le Martelot, G. et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7, e1000181 (2009).

    Article  Google Scholar 

  27. Downes, M., Carozzi, A.J. & Muscat, G.E.O. Constitutive expression of the orphan receptor, Rev-ErbAα, inhibits muscle differentiation and abrogates the expression of the myoD gene family. Mol. Endocrinol. 9, 1666–1678 (1995).

    CAS  PubMed  Google Scholar 

  28. Wang, J. & Lazar, M.A. Bifunctional role of Rev-erb alpha in adipocyte differentiation. Mol. Cell. Biol. 28, 2213–2220 (2008).

    Article  CAS  Google Scholar 

  29. Wu, N., Yin, L., Hanniman, E.A., Joshi, S. & Lazar, M.A. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα. Genes Dev. 23, 2201–2209 (2009).

    Article  CAS  Google Scholar 

  30. Lazar, M.A., Jones, K.E. & Chin, W.W. Isolation of a cDNA encoding human Rev-ErbAα: Transcription from the non-coding strand of a thyroid hormone receptor gene results in a related protein which does not bind thyroid hormone. Nucleic Acids Res. 9, 77–83 (1989).

    Google Scholar 

  31. Miyajima, N. et al. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 57, 31–39 (1989).

    Article  CAS  Google Scholar 

  32. Harding, H.P. & Lazar, M.A. The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol. Cell. Biol. 15, 4791–4802 (1995).

    Article  CAS  Google Scholar 

  33. Zamir, I. et al. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc. Natl. Acad. Sci. USA 94, 14400–14405 (1997).

    Article  CAS  Google Scholar 

  34. Woo, E.-J. et al. Structural insight into the constitutive repression function of the nuclear receptor Rev-erbβ. J. Mol. Biol. 373, 735–744 (2007).

    Article  CAS  Google Scholar 

  35. Pardee, K.I. et al. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBβ. PLoS Biol. 7, e43 (2009).

    Article  Google Scholar 

  36. Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with different repression domains. Mol. Cell. Biol. 16, 5458–5465 (1996).

    Article  CAS  Google Scholar 

  37. Nettles, K.W. & Greene, G.L. Ligand control of coregulator recruitment to nuclear receptors. Annu. Rev. Physiol. 67, 309–333 (2005).

    Article  CAS  Google Scholar 

  38. Xu, H.E. et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3, 397–403 (1999).

    Article  CAS  Google Scholar 

  39. Ishizuka, T. & Lazar, M.A. The N-CoR/HDAC3 deacetylase complex is required for repression by thyroid hormone receptor. Mol. Cell. Biol. 23, 5122–5131 (2003).

    Article  CAS  Google Scholar 

  40. Makowski, A., Brzostek, S., Cohen, R.N. & Hollenberg, A.N. Determination of nuclear receptor corepressor interactions with the thyroid hormone receptor. Mol. Endocrinol. 17, 273–286 (2003).

    Article  CAS  Google Scholar 

  41. Hu, X., Li, Y. & Lazar, M.A. Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol. Cell. Biol. 21, 1747–1758 (2001).

    Article  CAS  Google Scholar 

  42. Cohen, R.N. et al. The specificity of interactions between nuclear hormone receptors and corepressors is mediated by distinct amino acid sequences within the interacting domains. Mol. Endocrinol. 15, 1049–1061 (2001).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D Biol. Crystallogr. 57, 1367–1372 (2001).

    Article  CAS  Google Scholar 

  45. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  47. Brunger, A.T. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  49. Lovell, S.C. et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  50. Zamir, I., Zhang, J. & Lazar, M.A. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11, 835–846 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grant DK45586 (M.A.L.) and by the Penn–GlaxoSmithKline Academic Drug Discovery Initiative. We thank N. Wu for critically reading the manuscript and T.B. Stanley and T.M. Willson for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.J.P. performed the fluorescence energy transfer assays, M.H.L. and S.P.W. performed structure-based construct design, T.M.B. grew the cells, J.B. purified the protein, V.M. crystallized the protein complex, R.T.G. and R.T.N. solved the structure, R.T.G. refined and analyzed the structures, C.A.P. performed the mammalian two-hybrid assay, X.H. performed the thyroid receptor analysis, S.P.W. and R.T.N. provided critical review and C.A.P., R.T.G., M.H.L. and M.A.L. wrote and edited the manuscript.

Corresponding authors

Correspondence to Robert T Nolte or Mitchell A Lazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Methods (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelan, C., Gampe, R., Lambert, M. et al. Structure of Rev-erbα bound to N-CoR reveals a unique mechanism of nuclear receptor–co-repressor interaction. Nat Struct Mol Biol 17, 808–814 (2010). https://doi.org/10.1038/nsmb.1860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing