Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters

Abstract

Crystallographic, computational and functional analyses of LeuT have revealed details of the molecular architecture of Na+-coupled transporters and the mechanistic nature of ion/substrate coupling, but the conformational changes that support a functional transport cycle have yet to be described fully. We have used site-directed spin labeling and electron paramagnetic resonance (EPR) analysis to capture the dynamics of LeuT in the region of the extracellular vestibule associated with the binding of Na+ and leucine. The results outline the Na+-dependent formation of a dynamic outward-facing intermediate that exposes the primary substrate binding site and the conformational changes that occlude this binding site upon subsequent binding of the leucine substrate. Furthermore, the binding of the transport inhibitors tryptophan, clomipramine and octyl-glucoside is shown to induce structural changes that distinguish the resulting inhibited conformation from the Na+/leucine-bound state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Na+ binding establishes an outward-facing conformation, and leucine binding closes access to the extracellular vestibule.
Figure 2: Changes in the EPR spectrum are dependent on Na+ binding.
Figure 3: Substrate binding induces dehydration of the S1 site.
Figure 4: Distance measurements reveal Na+- and leucine-dependent spatial rearrangements.
Figure 5: Leucine binding to the S1 site is the primary determinant of leucine-dependent conformational changes.
Figure 6: Binding of inhibitors leads to structural changes distinct from the Na+/leucine-bound conformation.
Figure 7: Configuration changes of the TM3-TM6 aromatic cluster associated with the conformational transition simulated in the 660 ns molecular dynamics trajectory.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nelson, N. The family of Na+/Cl neurotransmitter transporters. J. Neurochem. 71, 1785–1803 (1998).

    Article  CAS  Google Scholar 

  2. Wadiche, J.I. & Kavanaugh, M.P. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci. 18, 7650–7661 (1998).

    Article  CAS  Google Scholar 

  3. Amara, S.G. & Sonders, M.S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 51, 87–96 (1998).

    Article  CAS  Google Scholar 

  4. Rudnick, G. Mechanisms of Biogenic Amine Neurotransmitter Transporters 25–52 (Humana Press Inc., Totowa, New Jersey, USA, 2002).

  5. Krause, S. & Schwarz, W. Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol. Pharmacol. 68, 1728–1735 (2005).

    CAS  PubMed  Google Scholar 

  6. Yamashita, A., Singh, S.K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  7. Singh, S.K., Piscitelli, C.L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008).

    Article  CAS  Google Scholar 

  8. Krishnamurthy, H., Piscitelli, C.L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).

    Article  CAS  Google Scholar 

  9. Gouaux, E. & Mackinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    Article  CAS  Google Scholar 

  10. Gouaux, E. Review. The molecular logic of sodium-coupled neurotransmitter transporters. Phil. Trans. R. Soc. Lond. B 364, 149–154 (2009).

    Article  CAS  Google Scholar 

  11. Noskov, S.Y. & Roux, B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J. Mol. Biol. 377, 804–818 (2008).

    Article  CAS  Google Scholar 

  12. Noskov, S.Y. Molecular mechanism of substrate specificity in the bacterial neutral amino acid transporter LeuT. Proteins 73, 851–863 (2008).

    Article  CAS  Google Scholar 

  13. Forrest, L.R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl. Acad. Sci. USA 105, 10338–10343 (2008).

    Article  CAS  Google Scholar 

  14. Celik, L., Schiott, B. & Tajkhorshid, E. Substrate binding and formation of an occluded state in the leucine transporter. Biophys. J. 94, 1600–1612 (2008).

    Article  CAS  Google Scholar 

  15. Caplan, D.A., Subbotina, J.O. & Noskov, S.Y. Molecular mechanism of ion-ion and ion-substrate coupling in the Na+-dependent leucine transporter LeuT. Biophys. J. 95, 4613–4621 (2008).

    Article  CAS  Google Scholar 

  16. Quick, M. et al. State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum. J. Biol. Chem. 281, 26444–26454 (2006).

    Article  CAS  Google Scholar 

  17. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008).

    Article  CAS  Google Scholar 

  18. Shaffer, P.L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    Article  CAS  Google Scholar 

  19. Ressl, S., Terwisscha van Scheltinga, A.C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–52 (2009).

    Article  CAS  Google Scholar 

  20. Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science 324, 1565–1568 (2009).

    Article  CAS  Google Scholar 

  21. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460, 1040–1043 (2009).

    Article  CAS  Google Scholar 

  22. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008).

    Article  CAS  Google Scholar 

  23. Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J.A. The mechanism of a neurotransmitter:sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008).

    Article  CAS  Google Scholar 

  24. Kniazeff, J. et al. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J. Biol. Chem. 283, 17691–17701 (2008).

    Article  CAS  Google Scholar 

  25. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  Google Scholar 

  26. Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317, 1390–1393 (2007).

    Article  CAS  Google Scholar 

  27. Singh, S.K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956 (2007).

    Article  CAS  Google Scholar 

  28. Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat. Struct. Mol. Biol. 16, 652–657 (2009).

    Article  CAS  Google Scholar 

  29. Quick, M. et al. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl. Acad. Sci. USA 106, 5563–5568 (2009).

    Article  CAS  Google Scholar 

  30. Forrest, L.R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24, 377–386 (2009).

    CAS  Google Scholar 

  31. Lester, H.A., Cao, Y. & Mager, S. Listening to neurotransmitter transporters. Neuron 17, 807–810 (1996).

    Article  CAS  Google Scholar 

  32. Smirnova, I. et al. Sugar binding induces an outward facing conformation of LacY. Proc. Natl. Acad. Sci. USA 104, 16504–16509 (2007).

    Article  CAS  Google Scholar 

  33. Hubbell, W.L., Mchaourab, H.S., Altenbach, C. & Lietzow, M.A. Watching proteins move using site-directed spin labeling. Structure 4, 779–783 (1996).

    Article  CAS  Google Scholar 

  34. Dong, J., Yang, G. & Mchaourab, H.S. Structural basis of energy transduction in the transport cycle of MsbA. Science 308, 1023–1028 (2005).

    Article  CAS  Google Scholar 

  35. Borbat, P.P. et al. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol. 5, e271 (2007).

    Article  Google Scholar 

  36. Zou, P. & Mchaourab, H.S. Alternating access of the putative substrate-binding chamber in the ABC transporter MsbA. J. Mol. Biol. 393, 574–585 (2009).

    Article  CAS  Google Scholar 

  37. Zou, P., Bortolus, M. & Mchaourab, H.S. Conformational cycle of the ABC transporter MsbA in liposomes: detailed analysis using double electron-electron resonance spectroscopy. J. Mol. Biol. 393, 586–597 (2009).

    Article  CAS  Google Scholar 

  38. Quick, M. & Javitch, J.A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. USA 104, 3603–3608 (2007).

    Article  CAS  Google Scholar 

  39. Altenbach, C., Froncisz, W., Hemker, R., Mchaourab, H. & Hubbell, W.L. Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys. J. 89, 2103–2112 (2005).

    Article  CAS  Google Scholar 

  40. Mchaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704 (1996).

    Article  CAS  Google Scholar 

  41. Owenius, R., Engstrom, M., Lindgren, M. & Huber, M. Influence of solvent polarity and hydrogen bonding on the EPR parameters of a nitroxide spin label studied by 9-GHz and 95-GHz EPR spectroscopy and DFT calculations. J. Phys. Chem. A 105, 10967–10977 (2001).

    Article  CAS  Google Scholar 

  42. Borbat, P.P., Mchaourab, H.S. & Freed, J.H. Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J. Am. Chem. Soc. 124, 5304–5314 (2002).

    Article  CAS  Google Scholar 

  43. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  44. Jeschke, G. Distance measurements in the nanometer range by pulse EPR. ChemPhysChem 3, 927–932 (2002).

    Article  CAS  Google Scholar 

  45. Jeschke, G. et al. DeerAnalysis2006–a comprehensive software package for analyzing pulsed ELDOR data. Appl. Magn. Reson. 30, 473–498 (2006).

    Article  CAS  Google Scholar 

  46. Chiang, Y.W., Borbat, P.P. & Freed, J.H. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J. Magn. Reson. 172, 279–295 (2005).

    Article  CAS  Google Scholar 

  47. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  48. MacKerell, A.D. Jr., Feig, M. & Brooks, C.L. III. Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 126, 698–699 (2004).

    Article  CAS  Google Scholar 

  49. Mackerell, A.D. Jr. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25, 1584–1604 (2004).

    Article  CAS  Google Scholar 

  50. Feller, S.E. et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by US National Institutes of Health grants DA022413 and DA17293 to J.A.J., DA023694 to L.S. and DA012408 to H.W., unrestricted funds from Vanderbilt University to H.S.M. and a predoctoral US National Research Service Award (F31NS063699) from the US National Institute of Neurological Disorders and Stroke to D.P.C. Computations were performed on the Ranger at the Texas Advanced Computing Center (TG-MCB090022) and the Cofrin Center for Bioinformation of the Institute for Computational Biomedicine at Weill Cornell Medical College.

Author information

Authors and Affiliations

Authors

Contributions

D.P.C. designed and performed the EPR experiments and analyzed the results; M.Q. designed, carried out and analyzed the binding and transport experiments with the help of F.D.d.C.; L.S. designed, carried out and analyzed the computational studies; F.D.d.C. helped construct, express and purify membranes harboring LeuT mutations; H.W., J.A.J. and H.S.M. helped to design experiments and analyze data related to the computational, biochemical and EPR studies, respectively; D.P.C., M.Q., L.S., H.W., J.A.J. and H.S.M. contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Hassane S Mchaourab.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 1867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claxton, D., Quick, M., Shi, L. et al. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol 17, 822–829 (2010). https://doi.org/10.1038/nsmb.1854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing