Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis

This article has been updated

Abstract

Spliceosomal small nuclear ribonucleoproteins (snRNPs), comprised of small nuclear RNAs (snRNAs) in complex with snRNP-specific proteins, are essential for pre-mRNA splicing. Coilin is not a snRNP protein but concentrates snRNPs and their assembly intermediates in Cajal bodies (CBs). Here we show that depletion of coilin in zebrafish embryos leads to CB dispersal, deficits in snRNP biogenesis and expression of spliced mRNA, as well as reduced cell proliferation followed by developmental arrest. Notably, injection of purified mature human snRNPs restored mRNA expression and viability. snRNAs were necessary but not sufficient for rescue, showing that only assembled snRNPs can bypass the requirement for coilin. Thus, coilin's essential function in embryos is to promote macromolecular assembly of snRNPs, likely by concentrating snRNP components in CBs to overcome rate-limiting assembly steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coilin is essential for embryogenesis.
Figure 2: Coilin is essential for Cajal body integrity.
Figure 3: U4 snRNA localization in living embryos reveals timing of CB dispersal upon coilin depletion.
Figure 4: Coilin morphants show defects in snRNP assembly and expression of spliced mRNAs.
Figure 5: Timeline of morphological, cellular and molecular defects in embryos depleted of coilin.
Figure 6: Purified human snRNPs rescue the viability of coilin morphants.
Figure 7: Individual mature human snRNPs bypass the need for coilin, and snRNAs are not sufficient.

Similar content being viewed by others

Change history

  • 04 April 2010

    In the version of this article initially published online, the second sentence of the abstract should have read “Coilin is not a snRNP protein but concentrates snRNPs and their assembly intermediates in Cajal bodies (CBs).”. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Matera, A.G., Izaguire-Sierra, M., Praveen, K. & Rajendra, T.K. Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev. Cell 17, 639–647 (2009).

    Article  CAS  Google Scholar 

  2. Gall, J.G. Cajal bodies: the first 100 years. Annu. Rev. Cell Dev. Biol. 16, 273–300 (2000).

    Article  CAS  Google Scholar 

  3. Dundr, M. et al. In vivo kinetics of Cajal body components. J. Cell Biol. 164, 831–842 (2004).

    Article  CAS  Google Scholar 

  4. Makarov, E.M. et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208 (2002).

    Article  CAS  Google Scholar 

  5. Stanek, D. & Neugebauer, K.M. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 115, 343–354 (2006).

    Article  CAS  Google Scholar 

  6. Wahl, M.C., Will, C.L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  7. Kiss, T. Biogenesis of small nuclear RNPs. J. Cell Sci. 117, 5949–5951 (2004).

    Article  CAS  Google Scholar 

  8. Meister, G., Buhler, D., Pillai, R., Lottspeich, F. & Fischer, U. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat. Cell Biol. 3, 945–949 (2001).

    Article  CAS  Google Scholar 

  9. Narayanan, U., Achsel, T., Luhrmann, R. & Matera, A.G. Coupled in vitro import of U snRNPs and SMN, the spinal muscular atrophy protein. Mol. Cell 16, 223–234 (2004).

    Article  CAS  Google Scholar 

  10. Fischer, U., Sumpter, V., Sekine, M., Satoh, T. & Luhrmann, R. Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J. 12, 573–583 (1993).

    Article  CAS  Google Scholar 

  11. Sleeman, J.E. & Lamond, A.I. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 9, 1065–1074 (1999).

    Article  CAS  Google Scholar 

  12. Ospina, J.K. et al. Cross-talk between snurportin1 subdomains. Mol. Biol. Cell 16, 4660–4671 (2005).

    Article  CAS  Google Scholar 

  13. Jady, B.E. et al. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 22, 1878–1888 (2003).

    Article  CAS  Google Scholar 

  14. Stanek, D. & Neugebauer, K.M. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. J. Cell Biol. 166, 1015–1025 (2004).

    Article  CAS  Google Scholar 

  15. Stanek, D. et al. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol. Biol. Cell 19, 2534–2543 (2008).

    Article  CAS  Google Scholar 

  16. Schaffert, N., Hossbach, M., Heintzmann, R., Achsel, T. & Luhrmann, R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 23, 3000–3009 (2004).

    Article  CAS  Google Scholar 

  17. Nesic, D., Tanackovic, G. & Kramer, A. A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J. Cell Sci. 117, 4423–4433 (2004).

    Article  CAS  Google Scholar 

  18. Handwerger, K.E., Murphy, C. & Gall, J.G. Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J. Cell Biol. 160, 495–504 (2003).

    Article  CAS  Google Scholar 

  19. Collier, S. et al. A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol. Biol. Cell 17, 2942–2951 (2006).

    Article  CAS  Google Scholar 

  20. Lemm, I. et al. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol. Biol. Cell 17, 3221–3231 (2006).

    Article  CAS  Google Scholar 

  21. Liu, J.L. et al. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol. Biol. Cell 20, 1661–1670 (2009).

    Article  CAS  Google Scholar 

  22. Stanek, D., Rader, S.D., Klingauf, M. & Neugebauer, K.M. Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J. Cell Biol. 160, 505–516 (2003).

    Article  CAS  Google Scholar 

  23. Tucker, K.E. et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J. Cell Biol. 154, 293–307 (2001).

    Article  CAS  Google Scholar 

  24. Kaiser, T.E., Intine, R.V. & Dundr, M. De novo formation of a subnuclear body. Science 322, 1713–1717 (2008).

    Article  CAS  Google Scholar 

  25. Tucker, K.E. et al. Structure and characterization of the murine p80 coilin gene, Coil. J. Struct. Biol. 129, 269–277 (2000).

    Article  CAS  Google Scholar 

  26. Hebert, M.D. & Matera, A.G. Self-association of coilin reveals a common theme in nuclear body localization. Mol. Biol. Cell 11, 4159–4171 (2000).

    Article  CAS  Google Scholar 

  27. Xu, H. et al. The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma 114, 155–166 (2005).

    Article  CAS  Google Scholar 

  28. Hebert, M.D. & Matera, A.G. Self-association of coilin reveals a common theme in nuclear body localization. Mol. Biol. Cell 11, 4159–4171 (2000).

    Article  CAS  Google Scholar 

  29. Walker, M.P., Tian, L. & Matera, A.G. Reduced viability, fertility and fecundity in mice lacking the cajal body marker protein, coilin. PLoS One 4, e6171 (2009).

    Article  Google Scholar 

  30. Strzelecka, M., Oates, A.C. & Neugebauer, K.M. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus 1, 96–108 (2010).

    Article  Google Scholar 

  31. Thisse, B. & Thisse, C. Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission (ZFIN, 2004).

  32. Klingauf, M., Stanek, D. & Neugebauer, K.M. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol. Biol. Cell 17, 4972–4981 (2006).

    Article  CAS  Google Scholar 

  33. Konig, H., Matter, N., Bader, R., Thiele, W. & Muller, F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131, 718–729 (2007).

    Article  Google Scholar 

  34. Winkler, C. et al. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev. 19, 2320–2330 (2005).

    Article  CAS  Google Scholar 

  35. McClintock, J.M., Kheirbek, M.A. & Prince, V.E. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129, 2339–2354 (2002).

    CAS  PubMed  Google Scholar 

  36. McMahon, H.T. et al. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 (1993).

    Article  CAS  Google Scholar 

  37. Bach, M., Bringmann, P. & Luhrmann, R. Purification of small nuclear ribonucleoprotein particles with antibodies against modified nucleosides of small nuclear RNAs. Methods Enzymol. 181, 232–257 (1990).

    Article  CAS  Google Scholar 

  38. Dönmez, G., Hartmuth, K. & Lührmann, R. Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA 10, 1925–1933 (2004).

    Article  Google Scholar 

  39. Segault, V., Will, C.L., Sproat, B.S. & Luhrmann, R. In vitro reconstitution of mammalian U2 and U5 snRNPs active in splicing: Sm proteins are functionally interchangeable and are essential for the formation of functional U2 and U5 snRNPs. EMBO J. 14, 4010–4021 (1995).

    Article  CAS  Google Scholar 

  40. Whittom, A.A., Xu, H. & Hebert, M.D. Coilin levels and modifications influence artificial reporter splicing. Cell. Mol. Life Sci. 65, 1256–1271 (2008).

    Article  CAS  Google Scholar 

  41. Deryusheva, S. & Gall, J.G. Small Cajal body-specific RNAs (scaRNAs) of Drosophila function in the absence of Cajal bodies. Mol. Biol. Cell 20, 5250–5259 (2009).

    Article  CAS  Google Scholar 

  42. Matera, A.G. & Ward, D.C. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol. 121, 715–727 (1993).

    Article  CAS  Google Scholar 

  43. Rino, J. et al. A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput. Biol. 3, 2019–2031 (2007).

    Article  CAS  Google Scholar 

  44. Brangwynne, C.P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  Google Scholar 

  45. Liu, J.L. & Gall, J.G. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. USA 104, 11655–11659 (2007).

    Article  CAS  Google Scholar 

  46. Hamm, J. An abundant U6 snRNP found in germ cells and embryos of Xenopus laevis embryos. EMBO J. 8, 4179–4187 (1989).

    Article  CAS  Google Scholar 

  47. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) 4th edn. (University of Oregon Press, Eugene, Oregon, USA, 1995).

  48. Wersig, C. & Bindereif, A. Conserved domains of human U4 snRNA required for snRNP and spliceosome assembly. Nucleic Acids Res. 18, 6223–6229 (1990).

    Article  CAS  Google Scholar 

  49. Nüsslein-Volhard, C. & Dahm, R. eds. Zebrafish: A Practical Approach 1st edn. (Oxford University Press, Oxford, 2002).

  50. Dybkov, O. et al. U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol. Cell. Biol. 26, 2803–2816 (2006).

    Article  CAS  Google Scholar 

  51. Golas, M.M., Sander, B., Will, C.L., Luhrmann, R. & Stark, H. Molecular architecture of the multiprotein splicing factor SF3b. Science 300, 980–984 (2003).

    Article  CAS  Google Scholar 

  52. Krainer, A.R. & Maniatis, T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736 (1985).

    Article  CAS  Google Scholar 

  53. Link, V., Shevchenko, A. & Heisenberg, C.P. Proteomics of early zebrafish embryos. BMC Dev. Biol. 6, 1 (2006).

    Article  Google Scholar 

  54. Schaffner, W. & Weissmann, C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56, 502–514 (1973).

    Article  CAS  Google Scholar 

  55. Lerner, M.R. & Steitz, J.A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 76, 5495–5499 (1979).

    Article  CAS  Google Scholar 

  56. Kramer, A., Keller, W., Appel, B. & Luhrmann, R. The 5′ terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38, 299–307 (1984).

    Article  CAS  Google Scholar 

  57. Young, P.J. et al. The exon 2b region of the spinal muscular atrophy protein, SMN, is involved in self-association and SIP1 binding. Hum. Mol. Genet. 9, 2869–2877 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Stanek, J. Geiger and C.-P. Heisenberg for their early involvement in this project and comments on the manuscript, K. Simons and M. Zerial for helpful discussions, G. Morris (Keele Univ.) for the gift of 1F1 antibody, I. Öchsner for her help with snRNA preparations, and the Max Planck Institute of Molecular Cell Biology fish facility. This work was supported by the Max Planck Society (K.M.N., A.C.O. and R.L.) and grants from the German Research Foundation (NE909/2-1 to K.M.N.) and the European Commission (EURASNET-518238 to K.M.N. and R.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.S., R.L., A.C.O. and K.M.N. designed the experiments; S.T. and G.W. purified snRNPs and snRNAs; M.S. and K.M.N. performed the experiments; M.S. analyzed the data; M.S., A.C.O. and K.M.N. wrote the paper.

Corresponding author

Correspondence to Karla M Neugebauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 6402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strzelecka, M., Trowitzsch, S., Weber, G. et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol 17, 403–409 (2010). https://doi.org/10.1038/nsmb.1783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing