Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis

Abstract

Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C2B domain of Munc13 functions as a Ca2+ regulator of short-term synaptic plasticity. The crystal structure of the C2B domain revealed an unusual Ca2+-binding site with an amphipathic α-helix. This configuration confers onto the C2B domain unique Ca2+-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca2+-dependent phospholipid binding to the C2B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca2+-dependent phosphatidylinositolbisphosphate binding to the C2B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca2+ and phosphatidylinositolphosphate binding to the Munc13 C2B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Munc13 C2B domain is a Ca2+-binding module.
Figure 2: Three-dimensional structures of the Ca2+-free and Ca2+-bound Munc13-1 C2B domain.
Figure 3: Ca2+-dependent binding of the Munc13 (M13) C2B domain to PIP- or PIP2-containing liposomes.
Figure 4: PIP and PIP2 dependence of Ca2+-induced liposome binding to Munc13 C2B domains.
Figure 5: Effect of Munc13-2 C2B domain mutations on release induced by isolated action potentials.
Figure 6: Ca2+ binding to the Munc13 C2B domain regulates release during high-frequency action-potential trains.
Figure 7: Model for the Ca2+ regulation of short-term plasticity by Munc13.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Katz, B. The Release of Neuronal Transmitter Substances (Liverpool University Press, Liverpool, 1969).

  2. Abbott, L.F. & Regehr, W.G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  CAS  Google Scholar 

  3. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  4. Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).

    Article  CAS  Google Scholar 

  5. Brose, N., Hofmann, K., Hata, Y. & Südhof, T.C. Mammalian homologues of C. elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 270, 25273–25280 (1995).

    Article  CAS  Google Scholar 

  6. Wang, Y., Okamoto, M., Schmitz, F., Hofman, K. & Südhof, T.C. RIM: a putative Rab3 effector in regulating synaptic vesicle fusion. Nature 388, 593–598 (1997).

    Article  CAS  Google Scholar 

  7. Betz, A. et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

    Article  CAS  Google Scholar 

  8. Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

    Article  CAS  Google Scholar 

  9. Dulubova, I. et al. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J. 24, 2839–2850 (2005).

    Article  CAS  Google Scholar 

  10. Augustin, I. et al. The cerebellum-specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J. Neurosci. 21, 10–17 (2000).

    Article  Google Scholar 

  11. Schlüter, O., Schmitz, F., Jahn, R., Rosenmund, C. & Südhof, T.C. A complete genetic analysis of neuronal Rab3 function. J. Neurosci. 24, 6629–6637 (2004).

    Article  Google Scholar 

  12. Rhee, J.-S. et al. Phorbol ester- and diacylglycerol-induced augmentation of neurotransmitter release from hippocampal neurons is mediated by Munc13s and not by PKCs. Cell 108, 121–133 (2002).

    Article  CAS  Google Scholar 

  13. Junge, H.J. et al. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118, 389–401 (2004).

    Article  CAS  Google Scholar 

  14. Basu, J. et al. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12, 1017–1018 (2005).

    Article  CAS  Google Scholar 

  15. Xia, Z. & Storm, D.R. The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6, 267–276 (2005).

    Article  CAS  Google Scholar 

  16. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 99, 155–159 (1999).

    Article  Google Scholar 

  17. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–489 (2001).

    Article  CAS  Google Scholar 

  18. Wayman, G.A., Lee, Y.S., Tokumitsu, H., Silva, A. & Soderling, T.R. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59, 914–931 (2008).

    Article  CAS  Google Scholar 

  19. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32, 1119–1131 (2001).

    Article  CAS  Google Scholar 

  20. Huang, Y.Y., Li, X.C. & Kandel, E.R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79, 69–79 (1994).

    Article  CAS  Google Scholar 

  21. Weisskopf, M.G., Castillo, P.E., Zalutsky, R.A. & Nicoll, R.A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265, 878–882 (1994).

    Article  Google Scholar 

  22. Augustin, I., Rosenmund, C., Südhof, T.C. & Brose, N. Munc-13 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  Google Scholar 

  23. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99, 9037–9042 (2002).

    Article  CAS  Google Scholar 

  24. Shiratsuchi, T. et al. Cloning and characterization of BAP3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1. Biochem. Biophys. Res. Commun. 251, 158–165 (1998).

    Article  CAS  Google Scholar 

  25. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    Article  CAS  Google Scholar 

  26. Madison, J.M., Nurrish, S. & Kaplan, J.M. UNC-13 interaction with syntaxin is required for synaptic transmission. Curr. Biol. 15, 2236–2242 (2005).

    Article  CAS  Google Scholar 

  27. Stevens, D.R. et al. Identification of the minimal protein domain required for priming activity of Munc13-1. Curr. Biol. 15, 2243–2248 (2005).

    Article  CAS  Google Scholar 

  28. Ubach, J., Zhang, X., Shao, X., Südhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17, 3921–3930 (1998).

    Article  CAS  Google Scholar 

  29. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    Article  CAS  Google Scholar 

  30. Rizo, J. & Südhof, T.C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).

    Article  CAS  Google Scholar 

  31. Shao, X., Fernandez, I., Südhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37, 16106–16115 (1998).

    Article  CAS  Google Scholar 

  32. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain. Synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  Google Scholar 

  33. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  34. Benfenati, F., Greengard, P., Brunner, J. & Bahler, M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayer. J. Cell Biol. 108, 1851–1862 (1989).

    Article  CAS  Google Scholar 

  35. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+ binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  Google Scholar 

  36. Zhang, X., Rizo, J. & Südhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  Google Scholar 

  37. Gerber, S.H., Rizo, J. & Südhof, T.C. Role of electrostatic and hydrophobic interactions in Ca2+-dependent phospholipid binding by the C2A-domain from synaptotagmin I. Diabetes 51 Suppl 1, S12–S18 (2002).

    Article  CAS  Google Scholar 

  38. Shin, O.H., Rizo, J. & Südhof, T.C. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat. Neurosci. 5, 649–656 (2002).

    Article  CAS  Google Scholar 

  39. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  Google Scholar 

  40. Pang, Z.P., Shin, O.H., Meyer, A.C., Rosenmund, C. & Südhof, T.C. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. J. Neurosci. 26, 12556–12565 (2006).

    Article  CAS  Google Scholar 

  41. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  Google Scholar 

  42. Li, C. et al. Ca2+-dependent and Ca2+-independent activities of neural and nonneural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  Google Scholar 

  43. Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671 (1995).

    Article  CAS  Google Scholar 

  44. Rosenmund, C. et al. Differential control of vesicle priming and short-term plasticity by Munc13 Isoforms. Neuron 33, 411–424 (2002).

    Article  CAS  Google Scholar 

  45. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  Google Scholar 

  46. Geppert, M. et al. A major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  47. Corbalan-Garcia, S. & Gomez-Fernandez, J.C. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim. Biophys. Acta 1761, 633–654 (2006).

    Article  CAS  Google Scholar 

  48. Wierda, K.D., Toonen, R.F., de Wit, H., Brussaard, A.B. & Verhage, M. Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54, 275–290 (2007).

    Article  CAS  Google Scholar 

  49. Rhee, J.-S. et al. Phorbol ester- and DAG-induced augmentation of neurotransmitter release from hippocampal neurons is mediated by Munc13s and not by PKCs. Cell 108, 121–133 (2002).

    Article  CAS  Google Scholar 

  50. Basu, J., Betz, A., Brose, N. & Rosenmund, C. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J. Neurosci. 27, 1200–1210 (2007).

    Article  CAS  Google Scholar 

  51. Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  52. Rhee, J.-S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 102, 18664–18669 (2005).

    Article  CAS  Google Scholar 

  53. Eberhard, D.A. & Holz, R.W. Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal Chromaffin cells. Cell. Mol. Neurobiol. 11, 357–370 (1991).

    Article  CAS  Google Scholar 

  54. Wenk, M.R. et al. PIP kinase Iγ is the major PI(4,5)P2 synthesizing enzyme at the synapse. Neuron 32, 79–88 (2001).

    Article  CAS  Google Scholar 

  55. Itoh, T., Ishihara, H., Shibasaki, Y., Oka, Y. & Takenawa, T. Autophosphorylation of type I phosphatidylinositol phosphate kinase regulates its lipid kinase activity. J. Biol. Chem. 275, 19389–19394 (2000).

    Article  CAS  Google Scholar 

  56. Park, S.J., Itoh, T. & Takenawa, T. Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J. Biol. Chem. 276, 4781–4787 (2001).

    Article  CAS  Google Scholar 

  57. Südhof, T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  Google Scholar 

  58. Gerber, S.H. et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321, 1507–1510 (2008).

    Article  CAS  Google Scholar 

  59. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  Google Scholar 

  60. Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  Google Scholar 

  61. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on Unix pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  62. Johnson, B.A. & Blevins, R.A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  63. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  64. Navaza, J. Amore: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  65. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  66. Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 57, 1445–1450 (2001).

    Article  CAS  Google Scholar 

  67. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  68. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  69. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  70. Pyott, S.J. & Rosenmund, C. The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons. J. Physiol. (Lond.) 539, 523–535 (2002).

    Article  CAS  Google Scholar 

  71. Maximov, A., Pang, Z., Tervo, D.G.R. & Südhof, T.C. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J. Neurosci. Methods 161, 75–87 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Kornblum, I. Herfort and H. Deng for excellent technical support. This paper was supported by grants from the US National Institutes of Health (NS051262 to C.R.; NS40944 to J.R.) and the Deutsche Forschungsgemeinschat (to C.R.).

Author information

Authors and Affiliations

Authors

Contributions

O.-H. S. performed the protein chemistry and molecular biology experiments; J.L., D.R.T. and M.M. performed the structural biology experiments; J.-S.R., M.C.-P. and Z.P.P. performed the electrophysiology experiments; S.W. and N.B. generated the vectors for expression of mutant Munc13; J.R., C.R. and T.C.S. wrote the paper.

Corresponding authors

Correspondence to Josep Rizo, Christian Rosenmund or Thomas C Südhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–9 (PDF 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, OH., Lu, J., Rhee, JS. et al. Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat Struct Mol Biol 17, 280–288 (2010). https://doi.org/10.1038/nsmb.1758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing