Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK8 is a positive regulator of transcriptional elongation within the serum response network

Abstract

The Mediator complex allows communication between transcription factors and RNA polymerase II (RNAPII). Cyclin-dependent kinase 8 (CDK8), the kinase found in some variants of Mediator, has been characterized mostly as a transcriptional repressor. Recently, CDK8 was demonstrated to be a potent oncoprotein. Here we show, using a human tumor cell line, that CDK8 is a positive regulator of genes within the serum response network, including several members of the activator protein 1 and early growth response family of oncogenic transcription factors. Mechanistic studies show that CDK8 is not required for RNAPII recruitment or promoter escape. Instead, CDK8 depletion leads to the appearance of slower elongation complexes carrying hypophosphorylated RNAPII. CDK8-Mediator regulates precise steps in the assembly of the RNAPII elongation complex, including the recruitment of positive transcription elongation factor b and BRD4. Furthermore, CDK8-Mediator specifically interacts with positive transcription elongation factor b. Thus, we have uncovered a role for CDK8 in transcriptional regulation that may contribute to its oncogenic effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CDK8 is a positive coregulator of serum-responsive immediate-early genes.
Figure 2: CDK8 positively affects RNAPII CTD phosphorylation at Ser5 and Ser2 without an effect on total RNAPII occupancy at FOS, EGR1, EGR2 and EGR3.
Figure 3: CDK8 promotes RNAPII elongation at IEGs.
Figure 4: (a) CDK8 depletion does not affect the levels of ELK1 and SRF, ELK1 phosphorylation, tetra-acetyl histone H4 (AcH4), TBP or TFIIB.
Figure 5: CDK8 is required for recruitment of CDK7, CDK9 and BRD4 to IEGs.
Figure 6: CDK9 inhibition mimics the postrecruitment defects in RNAPII activity observed in shCDK8 cells.
Figure 7: P-TEFb associates with CDK8-Mediator.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Taatjes, D.J., Marr, M.T. & Tjian, R. Regulatory diversity among metazoan co-activator complexes. Nat. Rev. Mol. Cell Biol. 5, 403–410 (2004).

    Article  CAS  Google Scholar 

  2. Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H. & Kornberg, R.D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  Google Scholar 

  3. Cantin, G.T., Stevens, J.L. & Berk, A.J. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc. Natl. Acad. Sci. USA 100, 12003–12008 (2003).

    Article  CAS  Google Scholar 

  4. Li, X.Y., Virbasius, A., Zhu, X. & Green, M.R. Enhancement of TBP binding by activators and general transcription factors. Nature 399, 605–609 (1999).

    Article  CAS  Google Scholar 

  5. Kuras, L. & Struhl, K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399, 609–613 (1999).

    Article  CAS  Google Scholar 

  6. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  7. O'Brien, T. & Lis, J.T. RNA polymerase II pauses at the 5′ end of the transcriptionally induced Drosophila hsp70 gene. Mol. Cell. Biol. 11, 5285–5290 (1991).

    Article  CAS  Google Scholar 

  8. Espinosa, J.M., Verdun, R.E. & Emerson, B.M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).

    Article  CAS  Google Scholar 

  9. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    Article  CAS  Google Scholar 

  10. Chao, S.H. & Price, D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31793–31799 (2001).

    Article  CAS  Google Scholar 

  11. Eberhardy, S.R. & Farnham, P.J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  Google Scholar 

  12. Zhu, Y. et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11, 2622–2632 (1997).

    Article  CAS  Google Scholar 

  13. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  Google Scholar 

  14. Kim, Y.K., Bourgeois, C.F., Isel, C., Churcher, M.J. & Karn, J. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol. Cell. Biol. 22, 4622–4637 (2002).

    Article  CAS  Google Scholar 

  15. Marshall, N.F., Peng, J., Xie, Z. & Price, D.H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183 (1996).

    Article  CAS  Google Scholar 

  16. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).

    Article  CAS  Google Scholar 

  17. Price, D.H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20, 2629–2634 (2000).

    Article  CAS  Google Scholar 

  18. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  19. Kim, M., Ahn, S.H., Krogan, N.J., Greenblatt, J.F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004).

    Article  CAS  Google Scholar 

  20. Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).

    Article  CAS  Google Scholar 

  21. McCracken, S. et al. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11, 3306–3318 (1997).

    Article  CAS  Google Scholar 

  22. Ho, C.K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3, 405–411 (1999).

    Article  CAS  Google Scholar 

  23. Rickert, P., Corden, J.L. & Lees, E. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 18, 1093–1102 (1999).

    Article  CAS  Google Scholar 

  24. Akhtar, M.S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).

    Article  CAS  Google Scholar 

  25. Ramanathan, Y. et al. Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences. J. Biol. Chem. 276, 10913–10920 (2001).

    Article  CAS  Google Scholar 

  26. Wang, G. et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol. Cell 17, 683–694 (2005).

    Article  CAS  Google Scholar 

  27. Donner, A.J., Szostek, S., Hoover, J.M. & Espinosa, J.M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).

    Article  CAS  Google Scholar 

  28. Sato, S. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685–691 (2004).

    Article  CAS  Google Scholar 

  29. Knuesel, M.T., Meyer, K.D., Bernecky, C. & Taatjes, D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).

    Article  CAS  Google Scholar 

  30. Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl. Acad. Sci. USA 103, 15788–15793 (2006).

    Article  CAS  Google Scholar 

  31. Mo, X., Kowenz-Leutz, E., Xu, H. & Leutz, A. Ras induces mediator complex exchange on C/EBP beta. Mol. Cell 13, 241–250 (2004).

    Article  CAS  Google Scholar 

  32. Pavri, R. et al. PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol. Cell 18, 83–96 (2005).

    Article  CAS  Google Scholar 

  33. Ding, N. et al. Mediator links epigenetic silencing of neuronal gene expression with x–linked mental retardation. Mol. Cell 31, 347–359 (2008).

    Article  CAS  Google Scholar 

  34. Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24, 1721–1735 (2004).

    Article  CAS  Google Scholar 

  35. Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547–551 (2008).

    Article  CAS  Google Scholar 

  36. Meyer, K.D. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J. 27, 1447–1457 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morris, E.J. et al. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552–556 (2008).

    Article  CAS  Google Scholar 

  38. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    Article  CAS  Google Scholar 

  39. Davis, R.J. Transcriptional regulation by MAP kinases. Mol. Reprod. Dev. 42, 459–467 (1995).

    Article  CAS  Google Scholar 

  40. Li, Q.-J. MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J. 22, 281–291 (2003).

    Article  CAS  Google Scholar 

  41. Stevens, J.L. et al. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296, 755–758 (2002).

    Article  CAS  Google Scholar 

  42. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  Google Scholar 

  43. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    Article  CAS  Google Scholar 

  44. Bourgeois, C.F., Kim, Y.K., Churcher, M.J., West, M.J. & Karn, J. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. 22, 1079–1093 (2002).

    Article  CAS  Google Scholar 

  45. Orphanides, G., Wu, W.H., Lane, W.S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).

    Article  CAS  Google Scholar 

  46. Hargreaves, D.C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    Article  CAS  Google Scholar 

  47. Houzelstein, D. et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol. 22, 3794–3802 (2002).

    Article  CAS  Google Scholar 

  48. Wu, S.Y. & Chiang, C.M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 282, 13141–13145 (2007).

    Article  CAS  Google Scholar 

  49. Jang, M.K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  Google Scholar 

  50. Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008).

    Article  CAS  Google Scholar 

  51. Knuesel, M.T., Meyer, K.D., Donner, A.J., Espinosa, J.M. & Taatjes, D.J. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol. Cell. Biol. 29, 650–661 (2009).

    Article  CAS  Google Scholar 

  52. Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102–106 (2000).

    Article  CAS  Google Scholar 

  53. Feaver, W.J., Svejstrup, J.Q., Henry, N.L. & Kornberg, R.D. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103–1109 (1994).

    Article  CAS  Google Scholar 

  54. Kanin, E.I. et al. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. USA 104, 5812–5817 (2007).

    Article  CAS  Google Scholar 

  55. Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839–850 (2007).

    Article  CAS  Google Scholar 

  56. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).

    Article  CAS  Google Scholar 

  57. Jones, J.C. et al. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J. Biol. Chem. 279, 24957–24964 (2004).

    Article  CAS  Google Scholar 

  58. Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).

    Article  CAS  Google Scholar 

  59. Viladevall, L. et al. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009).

    Article  CAS  Google Scholar 

  60. Barboric, M., Nissen, R.M., Kanazawa, S., Jabrane-Ferrat, N. & Peterlin, B.M. NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell 8, 327–337 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported initially by a grant from the US National Institutes of Health (NIH; CA117907) and later by a grant from the US National Science Foundation (MCB-0842974) to the Espinosa laboratory. J.M.E. is a Howard Hughes Medical Institute Early Career Scientist. Work in the Taatjes laboratory is supported by grants from the NIH (PO1 CA112131) and the Ellison Medical Foundation. A.J.D. and C.C.E. were supported in part by NIH training grant T32GM07135. We are thankful to members of the Espinosa laboratory for contributing ideas and support, especially M. Sechler and C. Potts for technical assistance and N. Gomes for discussion.

Author information

Authors and Affiliations

Authors

Contributions

A.J.D. performed most ChIP, Q-RT-PCR and western blot experiments, performed all nuclear run-ons, carried out microarray data analysis and wrote the manuscript. C.C.E. and D.T. generated all data regarding the CDK8-Mediator–P-TEFb interaction. J.M.E. performed ChIP, Q-RT-PCR and western blot experiments and carried out the microarray experiment.

Corresponding author

Correspondence to Joaquín M Espinosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–7 (PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donner, A., Ebmeier, C., Taatjes, D. et al. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17, 194–201 (2010). https://doi.org/10.1038/nsmb.1752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing