Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II

Abstract

Transcription of eukaryotic genes by RNA polymerase II (Pol II) is typically accompanied by nucleosome survival and minimal exchange of histones H3 and H4. The mechanism of nucleosome survival and recovery of chromatin structure remains obscure. Here we show how transcription through chromatin by Pol II is uniquely coupled with nucleosome survival. Structural modeling and functional analysis of the intermediates of transcription through a nucleosome indicated that when Pol II approaches an area of strong DNA-histone interactions, a small intranucleosomal DNA loop (zero-size or Ø-loop) containing transcribing enzyme is formed. During formation of the Ø-loop, the recovery of DNA-histone interactions behind Pol II is tightly coupled with their disruption ahead of the enzyme. This coupling is a distinct feature of the Pol II–type mechanism that allows further transcription through the nucleosome, prevents nucleosome translocation and minimizes displacement of H3 and H4 histones from DNA during enzyme passage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Promoter-distal high-affinity nucleosome positioning sequences dictate the high nucleosomal barrier to transcription by Pol II.
Figure 2: A model of an intranucleosomal Pol II containing a DNA Ø-loop.
Figure 3: RNAP forms an intranucleosomal Ø-loop at position +49.
Figure 4: Structures of the key intermediates formed during transcription through a nucleosome by Pol II.
Figure 5: Removal of the promoter-proximal H2A-H2B dimer results in Pol II arrest in the +45 region of the nucleosome.
Figure 6: A feedback mechanism allows survival of histones H3 and H4 during Pol II transcription.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Martens, J.A., Wu, P.Y. & Winston, F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19, 2695–2704 (2005).

    Article  CAS  Google Scholar 

  2. Thiriet, C. & Hayes, J.J. Histone dynamics during transcription: exchange of H2A/H2B dimers and H3/H4 tetramers during pol II elongation. Results Probl. Cell Differ. 41, 77–90 (2006).

    Article  CAS  Google Scholar 

  3. Kulaeva, O.I., Gaykalova, D.A. & Studitsky, V.M. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat. Res. 618, 116–129 (2007).

    Article  CAS  Google Scholar 

  4. Kristjuhan, A. & Svejstrup, J.Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23, 4243–4252 (2004).

    Article  CAS  Google Scholar 

  5. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  Google Scholar 

  6. Schwabish, M.A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117 (2004).

    Article  CAS  Google Scholar 

  7. Petesch, S.J. & Lis, J.T. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134, 74–84 (2008).

    Article  CAS  Google Scholar 

  8. Zhao, J., Herrera-Diaz, J. & Gross, D.S. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol. Cell. Biol. 25, 8985–8999 (2005).

    Article  CAS  Google Scholar 

  9. Wirbelauer, C., Bell, O. & Schubeler, D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev. 19, 1761–1766 (2005).

    Article  CAS  Google Scholar 

  10. Schwartz, B.E. & Ahmad, K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19, 804–814 (2005).

    Article  CAS  Google Scholar 

  11. Thiriet, C. & Hayes, J.J. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev. 19, 677–682 (2005).

    Article  CAS  Google Scholar 

  12. Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  Google Scholar 

  13. Rufiange, A., Jacques, P.E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    Article  CAS  Google Scholar 

  14. Jamai, A., Imoberdorf, R.M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355 (2007).

    Article  CAS  Google Scholar 

  15. Bondarenko, V.A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24, 469–479 (2006).

    Article  CAS  Google Scholar 

  16. Izban, M.G. & Luse, D.S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5, 683–696 (1991).

    Article  CAS  Google Scholar 

  17. Kireeva, M.L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  Google Scholar 

  18. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  Google Scholar 

  19. Angelov, D. et al. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J. 25, 1669–1679 (2006).

    Article  CAS  Google Scholar 

  20. Kimura, H. & Cook, P.R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    Article  CAS  Google Scholar 

  21. Studitsky, V.M., Clark, D.J. & Felsenfeld, G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76, 371–382 (1994).

    Article  CAS  Google Scholar 

  22. Studitsky, V.M., Clark, D.J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).

    Article  CAS  Google Scholar 

  23. Studitsky, V.M., Kassavetis, G.A., Geiduschek, E.P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997).

    Article  CAS  Google Scholar 

  24. Hall, M.A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    Article  CAS  Google Scholar 

  25. Morozov, A.V. et al. Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucleic Acids Res. 37, 4707–4722 (2009).

    Article  CAS  Google Scholar 

  26. Thåström, A., Bingham, L.M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol. 338, 695–709 (2004).

    Article  Google Scholar 

  27. Bednar, J., Studitsky, V.M., Grigoryev, S.A., Felsenfeld, G. & Woodcock, C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy. Mol. Cell 4, 377–386 (1999).

    Article  CAS  Google Scholar 

  28. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  29. Kettenberger, H., Armache, K.J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  Google Scholar 

  30. Walter, W., Kireeva, M.L., Studitsky, V.M. & Kashlev, M. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J. Biol. Chem. 278, 36148–36156 (2003).

    Article  CAS  Google Scholar 

  31. Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322–6334 (2003).

    Article  CAS  Google Scholar 

  32. Borukhov, S., Sagitov, V. & Goldfarb, A. Transcript cleavage factors from E. coli. Cell 72, 459–466 (1993).

    Article  CAS  Google Scholar 

  33. Komissarova, N. & Kashlev, M. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329–15338 (1997).

    Article  CAS  Google Scholar 

  34. Polach, K.J. & Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278–298 (1999).

    Article  CAS  Google Scholar 

  35. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).

    Article  CAS  Google Scholar 

  36. Sullivan, E.K., Weirich, C.S., Guyon, J.R., Sif, S. & Kingston, R.E. Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol. Cell. Biol. 21, 5826–5837 (2001).

    Article  CAS  Google Scholar 

  37. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  38. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  Google Scholar 

  39. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  Google Scholar 

  40. Formosa, T. et al. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162, 1557–1571 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717 (2006).

    Article  CAS  Google Scholar 

  42. van Holde, K.E., Lohr, D.E. & Robert, C. What happens to nucleosomes during transcription? J. Biol. Chem. 267, 2837–2840 (1992).

    CAS  PubMed  Google Scholar 

  43. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  44. David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103, 5320–5325 (2006).

    Article  CAS  Google Scholar 

  45. Araki, R. et al. More than 40,000 transcripts, including novel and noncoding transcripts, in mouse embryonic stem cells. Stem Cells 24, 2522–2528 (2006).

    Article  CAS  Google Scholar 

  46. Artsimovitch, I., Svetlov, V., Murakami, K.S. & Landick, R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J. Biol. Chem. 278, 12344–12355 (2003).

    Article  CAS  Google Scholar 

  47. Vassylyeva, M.N. et al. The carboxy-terminal coiled-coil of the RNA polymerase beta′-subunit is the main binding site for Gre factors. EMBO Rep. 8, 1038–1043 (2007).

    Article  CAS  Google Scholar 

  48. Studitsky, V.M. Preparation and analysis of positioned nucleosomes. Methods Mol. Biol. 119, 17–26 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Widom (Northwestern University) for plasmids containing the nucleosome positioning sequences, G. Zheng for making the movie, and D. Clark, M. Gartenberg, J. Hayes and D. Luse for suggestions and critical reading of the manuscript. This work was supported by US National Science Foundation 0549593 and National Institutes of Health (NIH) GM58650 grants to V.M.S., NIH GM74252 and GM74840 grants to D.G.V., and NIH GM067153 grant to I.A.

Author information

Authors and Affiliations

Authors

Contributions

O.I.K. designed and constructed some templates, designed and performed transcription experiments using Pol II; D.A.G. performed characterization and footprinting of the elongation complexes; N.A.P. performed restriction enzyme mapping of the elongation complexes; V.V.G. designed and constructed some templates and performed initial walking experiments; D.G.V. conducted docking; I.A. purified GreB and contributed to writing the manuscript; V.M.S. purified histones and donor chromatin, designed the study, interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Vasily M Studitsky.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Discussion and Supplementary Methods (PDF 1637 kb)

Supplementary Video 1

Transcription through a nucleosomes by RNA polymerase II. (GIF 3692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulaeva, O., Gaykalova, D., Pestov, N. et al. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat Struct Mol Biol 16, 1272–1278 (2009). https://doi.org/10.1038/nsmb.1689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing