Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule analysis of protein-free U2–U6 snRNAs

Abstract

Spliceosomes catalyze the maturation of precursor mRNAs in organisms ranging from yeast to humans. Their catalytic core comprises three small nuclear RNAs (U2, U5 and U6) involved in substrate positioning and catalysis. It has been postulated, but never shown experimentally, that the U2–U6 complex adopts at least two conformations that reflect different activation states. We have used single-molecule fluorescence to probe the structural dynamics of a protein-free RNA complex modeling U2–U6 from yeast and mutants of highly conserved regions of U2–U6. Our data show the presence of at least three distinct conformations in equilibrium. The minimal folding pathway consists of a two-step process with an obligatory intermediate. The first step is strongly magnesium dependent, and we provide evidence suggesting that the second step corresponds to the formation of the genetically conserved helix IB. Site-specific mutations in the highly conserved AGC triad and the U80 base in U6 suggest that the observed conformational dynamics correlate with residues that have an important role in splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure model of the spliceosomal snRNAs U2–U6.
Figure 2: Single-molecule FRET reveals a three-state folding pathway.
Figure 3: Mg2+ dependence of the folding rate constants for the U2–U6 complex.
Figure 4: Mutations in the AGC triad (red) show that helix IB forms only in the low FRET state.
Figure 5: smFRET histograms for the U80 mutations (U80, U80G, U80A and U80C) in 5 and 40 mM Mg2+, as indicated.

Similar content being viewed by others

References

  1. Kalnina, Z., Zayakin, P., Silina, K. & Line, A. Alterations of pre-mRNA splicing in cancer. Genes Chromosom. Cancer 42, 342–357 (2005).

    Article  CAS  Google Scholar 

  2. Licatalosi, D.D. & Darnell, R.B. Splicing regulation in neurologic disease. Neuron 52, 93–101 (2006).

    Article  CAS  Google Scholar 

  3. Stark, H. & Luhrmann, R. Cryo-electron microscopy of spliceosomal components. Annu. Rev. Biophys. Biomol. Struct. 35, 435–457 (2006).

    Article  CAS  Google Scholar 

  4. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  Google Scholar 

  5. Brow, D.A. Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360 (2002).

    Article  CAS  Google Scholar 

  6. Parker, R., Siliciano, P.G. & Guthrie, C. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49, 229–239 (1987).

    Article  CAS  Google Scholar 

  7. Lesser, C.F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 (1993).

    Article  CAS  Google Scholar 

  8. O'Keefe, R.T., Norman, C. & Newman, A.J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell 86, 679–689 (1996).

    Article  CAS  Google Scholar 

  9. Ségault, V. et al. Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol. Cell. Biol. 19, 2782–2790 (1999).

    Article  Google Scholar 

  10. Valadkhan, S. & Manley, J.L. Splicing-related catalysis by protein-free snRNAs. Nature 413, 701–707 (2001).

    Article  CAS  Google Scholar 

  11. Valadkhan, S., Mohammadi, A., Jaladat, Y. & Geisler, S. Protein-free small nuclear RNAs catalyze a two-step splicing reaction. Proc. Natl. Acad. Sci. USA 106, 11901–11906 (2009).

    Article  CAS  Google Scholar 

  12. Sontheimer, E.J., Gordon, P.M. & Piccirilli, J.A. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev. 13, 1729–1741 (1999).

    Article  CAS  Google Scholar 

  13. Steiner, M., Karunatilaka, K.S., Sigel, R.K. & Rueda, D. Single-molecule studies of group II intron ribozymes. Proc. Natl. Acad. Sci. USA 105, 13853–13858 (2008).

    Article  CAS  Google Scholar 

  14. Toor, N., Keating, K.S., Taylor, S.D. & Pyle, A.M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008).

    Article  CAS  Google Scholar 

  15. Abelson, J. Is the spliceosome a ribonucleoprotein enzyme? Nat. Struct. Mol. Biol. 15, 1235–1237 (2008).

    Article  CAS  Google Scholar 

  16. Madhani, H.D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992).

    Article  CAS  Google Scholar 

  17. Hilliker, A.K. & Staley, J.P. Multiple functions for the invariant AGC triad of U6 snRNA. RNA 10, 921–928 (2004).

    Article  CAS  Google Scholar 

  18. Mefford, M.A. & Staley, J.P. Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. RNA 15, 1386–1397 (2009).

    Article  CAS  Google Scholar 

  19. Sashital, D.G., Cornilescu, G., McManus, C.J., Brow, D.A. & Butcher, S.E. U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat. Struct. Mol. Biol. 11, 1237–1242 (2004).

    Article  CAS  Google Scholar 

  20. Sun, J.S. & Manley, J.L. A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 9, 843–854 (1995).

    Article  CAS  Google Scholar 

  21. Rhode, B.M., Hartmuth, K., Westhof, E. & Luhrmann, R. Proximity of conserved U6 and U2 snRNA elements to the 5′ splice site region in activated spliceosomes. EMBO J. 25, 2475–2486 (2006).

    Article  CAS  Google Scholar 

  22. Zhao, R. & Rueda, D. RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 10.1016/j.ymeth.2009.04.017 (2009).

  23. Hershey, J.W.B. & Merrick, W.C. The pathway and mechanism of initiation of protein synthesis. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 48 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

  24. Fabrizio, P. & Abelson, J. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 20, 3659–3664 (1992).

    Article  CAS  Google Scholar 

  25. Sontheimer, E.J., Sun, S. & Piccirilli, J.A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997).

    Article  CAS  Google Scholar 

  26. Yean, S.L., Wuenschell, G., Termini, J. & Lin, R.J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000).

    Article  CAS  Google Scholar 

  27. Huppler, A., Nikstad, L.J., Allmann, A.M., Brow, D.A. & Butcher, S.E. Metal binding and base ionization in the U6 RNA intramolecular stem-loop structure. Nat. Struct. Biol. 9, 431–435 (2002).

    Article  CAS  Google Scholar 

  28. Yuan, F. et al. Use of a novel Forster resonance energy transfer method to identify locations of site-bound metal ions in the U2–U6 snRNA complex. Nucleic Acids Res. 35, 2833–2845 (2007).

    Article  CAS  Google Scholar 

  29. Alemán, E.A., Lamichhane, R. & Rueda, D. Exploring RNA folding one molecule at a time. Curr. Opin. Chem. Biol. 12, 647–654 (2008).

    Article  Google Scholar 

  30. Nir, E. et al. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124 (2006).

    Article  CAS  Google Scholar 

  31. Kobitski, A.Y., Nierth, A., Helm, M., Jaschke, A. & Nienhaus, G.U. Mg2+-dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis. Nucleic Acids Res. 35, 2047–2059 (2007).

    Article  CAS  Google Scholar 

  32. McKinney, S.A., Freeman, A.D., Lilley, D.M. & Ha, T. Observing spontaneous branch migration of Holliday junctions one step at a time. Proc. Natl. Acad. Sci. USA 102, 5715–5720 (2005).

    Article  CAS  Google Scholar 

  33. Sashital, D.G., Allmann, A.M., Van Doren, S.R. & Butcher, S.E. Structural basis for a lethal mutation in U6 RNA. Biochemistry 42, 1470–1477 (2003).

    Article  CAS  Google Scholar 

  34. Reiter, N.J., Nikstad, L.J., Allmann, A.M., Johnson, R.J. & Butcher, S.E. Structure of the U6 RNA intramolecular stem-loop harboring an S(P)-phosphorothioate modification. RNA 9, 533–542 (2003).

    Article  CAS  Google Scholar 

  35. Moore, M.J. & Sharp, P.A. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368 (1993).

    Article  CAS  Google Scholar 

  36. Gordon, P.M., Sontheimer, E.J. & Piccirilli, J.A. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6, 199–205 (2000).

    Article  CAS  Google Scholar 

  37. Sontheimer, E.J. The spliceosome shows its metal. Nat. Struct. Biol. 8, 11–13 (2001).

    Article  CAS  Google Scholar 

  38. Sun, J.S. & Manley, J.L. The human U6 snRNA intramolecular helix: structural constraints and lack of sequence specificity. RNA 3, 514–526 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rueda, D. & Walter, N.G. Fluorescent energy transfer readout of an aptazyme-based biosensor. Methods Mol. Biol. 335, 289–310 (2006).

    CAS  PubMed  Google Scholar 

  40. Rueda, D., Wick, K., McDowell, S.E. & Walter, N.G. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42, 9924–9936 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Butcher and D. Brow for many helpful and stimulating discussions and for commenting on the manuscript. This work was supported by the NIH (R01 GM085116) and an NSF CAREER award to D.R. (MCB-0747285).

Author information

Authors and Affiliations

Authors

Contributions

Z.G. performed experiments, analyzed data and wrote the manuscript; K.S.K. performed experiments and edited the manuscript; D.R. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to David Rueda.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 981 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Karunatilaka, K. & Rueda, D. Single-molecule analysis of protein-free U2–U6 snRNAs. Nat Struct Mol Biol 16, 1154–1159 (2009). https://doi.org/10.1038/nsmb.1672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing