Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular basis for the regulation of the cap-binding complex by the importins

Abstract

The binding of capped RNAs to the cap-binding complex (CBC) in the nucleus, and their dissociation from the CBC in the cytosol, represent essential steps in RNA processing. Here we show how the nucleocytoplasmic transport proteins importin-α and importin-β have key roles in regulating these events. As a first step toward understanding the molecular basis for this regulation, we determined a 2.2-Å resolution X-ray structure for a CBC–importin-α complex that provides a detailed picture for how importin-α binds to the CBP80 subunit of the CBC. Through a combination of biochemical studies, X-ray crystallographic information and small-angle scattering experiments, we then determined how importin-β binds to the CBC through its CBP20 subunit. Together, these studies enable us to propose a model describing how importin-β stimulates the dissociation of capped RNA from the CBC in the cytosol following its nuclear export.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analyses of the CBC–importin-α complex.
Figure 2: Interaction of importin-β with the CBC.
Figure 3: Interactions between the N terminus of CBP20 and its binding groove within CBP80.
Figure 4: Structural model for the CBC–importin-α–importin-β complex.
Figure 5: Binding of importin-α to the N terminus of CBP80 is necessary for growth factor–mediated changes in cap binding by the CBC.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. von der Haar, T., Gross, J.D., Wagner, G. & McCarthy, J.E.G. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat. Struct. Mol. Biol. 11, 503–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, J.D. & Izaurralde, E. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem. 247, 461–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, H. et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127, 1389–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Ohno, M., Segref, A., Bachi, A., Wilm, M. & Mattaj, I.W. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101, 187–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Segref, A., Mattaj, I.W. & Ohno, M. The evolutionarily conserved region of the U snRNA export mediator PHAX is a novel RNA-binding domain that is essential for U snRNA export. RNA 7, 351–360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flaherty, S.M., Fortes, P., Izaurralde, E., Mattaj, I.W. & Gilmartin, G.M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl. Acad. Sci. USA 94, 11893–11898 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balatsos, N.A., Nilsson, P., Mazza, C., Cusack, S. & Virtanen, A. Inhibition of mRNA deadenylation by the nuclear cap binding complex (CBC). J. Biol. Chem. 281, 4517–4522 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Fortes, P. et al. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol. Cell 6, 191–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Izaurralde, E., McGuigan, C. & Mattaj, I.W. Nuclear localization of a cap-binding protein complex. Cold Spring Harb. Symp. Quant. Biol. 60, 669–675 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Görlich, D. et al. Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32 (1996).

    Article  PubMed  Google Scholar 

  15. Li, H. & Tschudi, C. Novel and essential subunits in the 300-kilodalton nuclear cap binding complex of Trypanosoma brucei. Mol. Cell. Biol. 25, 2216–2226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oeffinger, M. et al. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 4, 951–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Wen, Y. & Shatkin, A.J. Cap methyltransferase selective binding and methylation of GpppG-RNA are stimulated by importin-α. Genes Dev. 14, 2944–2949 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F.R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tarendeau, F. et al. Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat. Struct. Mol. Biol. 14, 229–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Conti, E. & Kuriyan, J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin α. Structure 8, 329–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat. Struct. Biol. 6, 388–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Fontes, M.R., Teh, T. & Kobe, B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J. Mol. Biol. 297, 1183–1194 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Fontes, M.R., Teh, T., Jans, D., Brinkworth, R.I. & Kobe, B. Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-α. J. Biol. Chem. 278, 27981–27987 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8, 383–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Mazza, C., Segref, A., Mattaj, I.W. & Cusack, S. Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. EMBO J. 21, 5548–5557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Calero, G. et al. Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat. Struct. Biol. 9, 912–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Olia, A.S. et al. Binding-induced stabilization and assembly of the phage P22 tail accessory factor gp4. J. Mol. Biol. 363, 558–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Worch, R. et al. Specificity of recognition of mRNA 5′ cap by human nuclear cap-binding complex. RNA 11, 1355–1363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch, M.H., Vachette, P. & Svergun, D.I. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36, 147–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Petoukhov, M.V. & Svergun, D.I. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys. J. 89, 1237–1250 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cingolani, G., Petosa, C., Weis, K. & Muller, C.W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Svergun, D.I., Barberato, C. & Koch, M.H.J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  35. García De La Torre, J., Huertas, M.L. & Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719–730 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wilson, K.F. et al. The nuclear cap-binding complex is a novel target of growth factor receptor-coupled signal transduction. J. Biol. Chem. 274, 4166–4173 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, K.F., Wu, W.J. & Cerione, R.A. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J. Biol. Chem. 275, 37307–37310 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mamane, Y. et al. eIF4E-from translation to transformation. Oncogene 23, 3172–3179 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bischoff, F.R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Coutavas, E., Ren, M., Oppenheim, J.D., D Eustachio, P. & Rush, M.G. Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366, 585–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Bischoff, F.R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J. 14, 705–715 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lührmann, R., Kastner, B. & Bach, M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim. Biophys. Acta 1087, 265–292 (1990).

    Article  PubMed  Google Scholar 

  43. Izaurralde, E. & Mattaj, I.W. Transport of RNA between nucleus and cytoplasm. Semin. Cell Biol. 3, 279–288 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Svergun, D.I. Mathematical methods in small-angle scattering data analysis. J. Appl. Crystallogr. 24, 485–492 (1991).

    Article  CAS  Google Scholar 

  45. Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  46. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography, No. 26 (1992).

  47. Evans, P.R. in Proceedings of CCP4 Study Weekend: Data Collection and Processing (eds. Sawyer, L., Isaacs, N. & Bailey, S.) Science and Engineering Research Council, 114–122 (Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  48. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  53. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  54. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  56. Semisotnov, G.V., Timchenko, A.A., Melnik, B.S., Kimura, K. & Kihara, H. Kratky plot as a tool to evaluate the molecular mass of globular proteins. Photon Factory Activity Report 2002 20, Part B 256 (2003).

    Google Scholar 

  57. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. Harding, S.E., Rowe, A.J., & Horton, J.C.) 90–125 (Royal Society of Chemistry, Cambridge, UK, 1992).

    Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grant number GM40654. We would like to thank G. Cingolani (State University of New York Upstate Medical University) for assistance with the agarose native gel assays and discussion of the results and for the importin-β constructs encoding residues 1–619, 1–445, 45–876 (pTYB4 vector (NEB)) and 127–876 (pQE60 (Qiagen)); H. Sondermann and Q. Wang for helping with the Advanced Photon Source (APS) data collection; B. Crane, M. Sanches and A. Rojas for helpful discussions; and C. Westmiller for her excellent secretarial assistance. We also thank the Cornell High Energy Synchrotron Source (CHESS) and APS beamline staff for their assistance with the data collection.

Author information

Authors and Affiliations

Authors

Contributions

S.M.G.D. designed and performed the protein purifications, EMSA, crystallography, UV cross-linking assays, pull-downs, native gels, SAXS, bioinformatics work and AUC experiments, analyzed data and wrote the paper; K.F.W. designed and performed cell biology experiments, analyzed data and wrote the paper; K.S.R. performed cell biology experiments; A.L.B.A. analyzed crystallographic data; R.A.C. analyzed data and wrote the paper.

Corresponding author

Correspondence to Richard A Cerione.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Data and Supplementary Methods (PDF 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, S., Wilson, K., Rojas, K. et al. The molecular basis for the regulation of the cap-binding complex by the importins. Nat Struct Mol Biol 16, 930–937 (2009). https://doi.org/10.1038/nsmb.1649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing