Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incision-dependent and error-free repair of (CAG)n/(CTG)n hairpins in human cell extracts

Abstract

Expansion of CAG/CTG trinucleotide repeats is associated with certain familial neurological disorders, including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism contributes to their expansion. However, the molecular mechanism(s) by which cells remove CAG/CTG hairpins remain unknown. Here we demonstrate that human cell extracts can catalyze error-free repair of CAG/CTG hairpins in a nick-directed manner. The repair system specifically targets CAG/CTG tracts for incisions in the nicked DNA strand, followed by DNA resynthesis using the continuous strand as a template, thereby ensuring CAG/CTG stability. Proliferating cell nuclear antigen (PCNA) is required for the incision step of the hairpin removal, which uses distinct endonuclease activities for individual CAG/CTG hairpins depending on their strand locations and/or secondary structures. We discuss the implications of these data for understanding the etiology of neurological diseases and trinucleotide repeat instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Error-free CAG/CTG HPR in human extracts.
Figure 2: Removal of nicked strand CTG hairpin by dual incisions.
Figure 3: Analysis of repair intermediates of substrate C-(CAG)25.
Figure 4: Analysis of repair intermediates of substrates V-(CAG)25 and V-(CTG)25.
Figure 5: PCNA is required for CAG/CTG HPR.
Figure 6: Model of CAG/CTG HPR in human cells.

Similar content being viewed by others

References

  1. Mirkin, S.M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    Article  CAS  Google Scholar 

  2. Pearson, C.E., Nichol Edamura, K. & Cleary, J.D. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005).

    Article  CAS  Google Scholar 

  3. Gordenin, D.A., Kunkel, T.A. & Resnick, M.A. Repeat expansion–all in a flap? Nat. Genet. 16, 116–118 (1997).

    Article  CAS  Google Scholar 

  4. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat. Genet. 10, 213–218 (1995).

    Article  CAS  Google Scholar 

  5. Miret, J.J., Pessoa-Brandao, L. & Lahue, R.S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  Google Scholar 

  6. Richards, R.I. & Sutherland, G.R. Simple repeat DNA is not replicated simply. Nat. Genet. 6, 114–116 (1994).

    Article  CAS  Google Scholar 

  7. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  Google Scholar 

  8. Moore, H., Greenwell, P.W., Liu, C.P., Arnheim, N. & Petes, T.D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96, 1504–1509 (1999).

    Article  CAS  Google Scholar 

  9. Petruska, J., Arnheim, N. & Goodman, M.F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res. 24, 1992–1998 (1996).

    Article  CAS  Google Scholar 

  10. Panigrahi, G.B., Lau, R., Montgomery, S.E., Leonard, M.R. & Pearson, C.E. Slipped (CTG)•(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nat. Struct. Mol. Biol. 12, 654–662 (2005).

    Article  CAS  Google Scholar 

  11. Corrette-Bennett, S.E., Parker, B.O., Mohlman, N.L. & Lahue, R.S. Correction of large mispaired DNA loops by extracts of Saccharomyces cerevisiae. J. Biol. Chem. 274, 17605–17611 (1999).

    Article  CAS  Google Scholar 

  12. Littman, S.J., Fang, W.H. & Modrich, P. Repair of large insertion/deletion heterologies in human nuclear extracts is directed by a 5′ single-strand break and is independent of the mismatch repair system. J. Biol. Chem. 274, 7474–7481 (1999).

    Article  CAS  Google Scholar 

  13. McCulloch, S.D., Gu, L. & Li, G.M. Nick-dependent and -independent processing of large DNA loops in human cells. J. Biol. Chem. 278, 50803–50809 (2003).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122, 693–705 (2005).

    Article  CAS  Google Scholar 

  15. Hartenstine, M.J., Goodman, M.F. & Petruska, J. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J. Biol. Chem. 275, 18382–18390 (2000).

    Article  CAS  Google Scholar 

  16. Bhattacharyya, S. & Lahue, R.S. Srs2 helicase of Saccharomyces cerevisiae selectively unwinds triplet repeat DNA. J. Biol. Chem. 280, 33311–33317 (2005).

    Article  CAS  Google Scholar 

  17. Easteal, S., McLeod, N. & Reed, K. DNA Profiling: Principles, Pitfalls and Potential (Harwood Academic, Langhorne, PA, 1993).

    Google Scholar 

  18. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).

    Article  CAS  Google Scholar 

  19. Guo, S. et al. Differential requirement for proliferating cell nuclear antigen in 5′ and 3′ nick-directed excision in human mismatch repair. J. Biol. Chem. 279, 16912–16917 (2004).

    Article  CAS  Google Scholar 

  20. Chen, J., Jackson, P.K., Kirschner, M.W. & Dutta, A. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374, 386–388 (1995).

    Article  CAS  Google Scholar 

  21. Friedberg, E.C. et al. DNA Repair and Mutagenesis (ASM, Washington DC, 2006).

  22. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  Google Scholar 

  23. Wood, R.D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).

    Article  CAS  Google Scholar 

  24. Oussatcheva, E.A., Hashem, V.I., Zou, Y., Sinden, R.R. & Potaman, V.N. Involvement of the nucleotide excision repair protein UvrA in instability of CAG•CTG repeat sequences in Escherichia coli. J. Biol. Chem. 276, 30878–30884 (2001).

    Article  CAS  Google Scholar 

  25. Parniewski, P., Bacolla, A., Jaworski, A. & Wells, R.D. Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res. 27, 616–623 (1999).

    Article  CAS  Google Scholar 

  26. Lin, Y. & Wilson, J.H. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 27, 6209–6217 (2007).

    Article  CAS  Google Scholar 

  27. Freudenreich, C.H., Kantrow, S.M. & Zakian, V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  Google Scholar 

  28. Liu, Y., Zhang, H., Veeraraghavan, J., Bambara, R.A. & Freudenreich, C.H. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24, 4049–4064 (2004).

    Article  CAS  Google Scholar 

  29. Tishkoff, D.X., Filosi, N., Gaida, G.M. & Kolodner, R.D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253–263 (1997).

    Article  CAS  Google Scholar 

  30. van den Broek, W.J., Nelen, M.R., van der Heijden, G.W., Wansink, D.G. & Wieringa, B. Fen1 does not control somatic hypermutability of the (CTG)n•(CAG)n repeat in a knock-in mouse model for DM1. FEBS Lett. 580, 5208–5214 (2006).

    Article  CAS  Google Scholar 

  31. Henricksen, L.A., Tom, S., Liu, Y. & Bambara, R.A. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275, 16420–16427 (2000).

    Article  CAS  Google Scholar 

  32. Singh, P., Zheng, L., Chavez, V., Qiu, J. & Shen, B. Concerted action of exonuclease and Gap-dependent endonuclease activities of FEN-1 contributes to the resolution of triplet repeat sequences (CTG)n- and (GAA)n-derived secondary structures formed during maturation of Okazaki fragments. J. Biol. Chem. 282, 3465–3477 (2007).

    Article  CAS  Google Scholar 

  33. Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999).

    Article  CAS  Google Scholar 

  34. Holmes, J., Jr., Clark, S. & Modrich, P. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl. Acad. Sci. USA 87, 5837–5841 (1990).

    Article  CAS  Google Scholar 

  35. Thomas, D.C., Roberts, J.D. & Kunkel, T.A. Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266, 3744–3751 (1991).

    CAS  PubMed  Google Scholar 

  36. Li, G.M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).

    Article  CAS  Google Scholar 

  37. Manley, K., Shirley, T.L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23, 471–473 (1999).

    Article  CAS  Google Scholar 

  38. Owen, B.A. et al. (CAG)n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat. Struct. Mol. Biol. 12, 663–670 (2005).

    Article  CAS  Google Scholar 

  39. McMurray, C.T. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair (Amst.) 7, 1121–1134 (2008).

    Article  CAS  Google Scholar 

  40. Tian, L. et al. Mismatch recognition protein MutSβ does not hijack (CAG)n hairpin repair in vitro. J. Biol. Chem. (in the press).

  41. Lin, Y., Dion, V. & Wilson, J.H. Transcription promotes contraction of CAG repeat tracts in human cells. Nat. Struct. Mol. Biol. 13, 179–180 (2006).

    Article  CAS  Google Scholar 

  42. Pearson, C.E. et al. Slipped-strand DNAs formed by long (CAG)•(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res. 30, 4534–4547 (2002).

    Article  CAS  Google Scholar 

  43. Frank, G., Qiu, J., Zheng, L. & Shen, B. Stimulation of eukaryotic flap endonuclease-1 activities by proliferating cell nuclear antigen (PCNA) is independent of its in vitro interaction via a consensus PCNA binding region. J. Biol. Chem. 276, 36295–36302 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Shen (City of Hope National Medical Center), J. Hurwitz (Memorial Sloan Kettering Cancer Center) and A. Dutta (University of Virginia) for FEN-1, PCNA and p21C expression vectors, respectively, and D. Li (Shanghai Institutes for Biological Sciences) for helpful discussions. The work was supported in part by US National Institute of Helath grants GM072756 (to G.-M.L.) and CA104333 (to L.G.). G.-M.L. is the James-Gardner Endowed Chair in Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

C.H. performed all the experiments; N.L.S.C. helped to determine some incision intermediates; L.G. designed and constructed DNA hairpin substrates, and developed the in vitro HPR assay; G.-M.L. designed and analyzed all the experiments, and wrote the manuscript.

Corresponding author

Correspondence to Guo-Min Li.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 2957 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, C., Chan, N., Gu, L. et al. Incision-dependent and error-free repair of (CAG)n/(CTG)n hairpins in human cell extracts. Nat Struct Mol Biol 16, 869–875 (2009). https://doi.org/10.1038/nsmb.1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing