Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Cancer-associated regulation of alternative splicing

Abstract

Alternative splicing of pre-mRNA increases the diversity of protein functions. Here we show that about half of all active alternative splicing events in ovarian and breast tissues are changed in tumors, and many seem to be regulated by a single factor; sequence analysis revealed binding sites for the RNA binding protein FOX2 downstream of one-third of the exons skipped in cancer. High-resolution analysis of FOX2 binding sites defined the precise positions relative to alternative exons at which the protein may function as either a silencer or an enhancer. Most of the identified targets were shifted in the same direction by FOX2 depletion in cell lines as they were in breast and ovarian cancer tissues. Notably, we found expression of FOX2 itself is downregulated in ovarian cancer and its splicing is altered in breast cancer samples. These results suggest that the decreased expression of FOX2 in cancer tissues modulates splicing and controls proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening strategy for the identification of cancer-associated ASEs.
Figure 2: Heatmap representation of isoform ratios for the association screen in normal and cancerous breast and ovary tissue samples.
Figure 3: Splicing profiles of normal and cancerous breast and ovary tissue.
Figure 4: RNA maps of FOX2-induced splicing shifts.
Figure 5: FOX2-regulated alternative splicing in cancer.

Similar content being viewed by others

References

  1. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  2. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  Google Scholar 

  3. Balzer, R.J. & Henry, M.F. Snu56p is required for Mer1p-activated meiotic splicing. Mol. Cell. Biol. 28, 2497–2508 (2008).

    Article  CAS  Google Scholar 

  4. Lynch, K.W. & Maniatis, T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10, 2089–2101 (1996).

    Article  CAS  Google Scholar 

  5. Xu, X. et al. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article  CAS  Google Scholar 

  6. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  Google Scholar 

  7. Tazi, J., Bakkour, N. & Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta 1792, 14–26 (2009).

    Article  CAS  Google Scholar 

  8. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  Google Scholar 

  9. Klinck, R. et al. Multiple alternative splicing markers for ovarian cancer. Cancer Res. 68, 657–663 (2008).

    Article  CAS  Google Scholar 

  10. Venables, J.P. et al. Identification of alternative splicing markers for breast cancer. Cancer Res. 68, 9525–9531 (2008).

    Article  CAS  Google Scholar 

  11. Venables, J.P. Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004).

    Article  CAS  Google Scholar 

  12. Martinez-Contreras, R. et al. hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623, 123–147 (2007).

    Article  Google Scholar 

  13. Singh, R. & Valcarcel, J. Building specificity with nonspecific RNA-binding proteins. Nat. Struct. Mol. Biol. 12, 645–653 (2005).

    Article  CAS  Google Scholar 

  14. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  Google Scholar 

  15. Ponthier, J.L. et al. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J. Biol. Chem. 281, 12468–12474 (2006).

    Article  CAS  Google Scholar 

  16. Grosso, A.R., Martins, S. & Carmo-Fonseca, M. The emerging role of splicing factors in cancer. EMBO Rep. 9, 1087–1093 (2008).

    Article  CAS  Google Scholar 

  17. Ghigna, C. et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20, 881–890 (2005).

    Article  CAS  Google Scholar 

  18. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  Google Scholar 

  19. Cheung, H.C. et al. Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays. BMC Genomics 9, 216 (2008).

    Article  Google Scholar 

  20. Gardina, P.J. et al. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7, 325 (2006).

    Article  Google Scholar 

  21. Thorsen, K. et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell. Proteomics 7, 1214–1224 (2008).

    Article  CAS  Google Scholar 

  22. Xi, L. et al. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res. 36, 6535–6547 (2008).

    Article  CAS  Google Scholar 

  23. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008).

    Article  CAS  Google Scholar 

  24. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  Google Scholar 

  25. Kornblihtt, A.R., Vibe-Pedersen, K. & Baralle, F.E. Human fibronectin: molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain. EMBO J. 3, 221–226 (1984).

    Article  CAS  Google Scholar 

  26. Li, H. et al. Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc. Natl. Acad. Sci. USA 105, 20179–20184 (2008).

    Article  CAS  Google Scholar 

  27. Castle, J.C. et al. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat. Genet. 40, 1416–1425 (2008).

    Article  CAS  Google Scholar 

  28. Pruitt, K.D., Tatusova, T., Klimke, W. & Maglott, D.R. NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res. 37, D32–D36 (2009).

    Article  CAS  Google Scholar 

  29. Fan, W. et al. BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs. J. Biol. Chem. 277, 8061–8067 (2002).

    Article  CAS  Google Scholar 

  30. Venables, J.P. Downstream intronic splicing enhancers. FEBS Lett. 581, 4127–4131 (2007).

    Article  CAS  Google Scholar 

  31. Venables, J.P. et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell. Biol. 28, 6033–6043 (2008).

    Article  CAS  Google Scholar 

  32. Thierry-Mieg, D. & Thierry-Mieg, J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7, S12 (2006).

    Article  Google Scholar 

  33. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    Article  CAS  Google Scholar 

  34. Underwood, J.G., Boutz, P.L., Dougherty, J.D., Stoilov, P. & Black, D.L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol. 25, 10005–10016 (2005).

    Article  CAS  Google Scholar 

  35. Ge, X. et al. Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics 86, 127–141 (2005).

    Article  CAS  Google Scholar 

  36. Pontén, F., Jirstrom, K. & Uhlen, M. The Human Protein Atlas—a tool for pathology. J. Pathol. 216, 387–393 (2008).

    Article  Google Scholar 

  37. Fukumura, K. et al. Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1γ gene. Nucleic Acids Res. 35, 5303–5311 (2007).

    Article  CAS  Google Scholar 

  38. Baraniak, A.P., Chen, J.R. & Garcia-Blanco, M.A. Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol. Cell. Biol. 26, 1209–1222 (2006).

    Article  CAS  Google Scholar 

  39. Calarco, J.A. et al. Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev. 21, 2963–2975 (2007).

    Article  CAS  Google Scholar 

  40. Chisa, J.L. & Burke, D.T. Mammalian mRNA splice-isoform selection is tightly controlled. Genetics 175, 1079–1087 (2007).

    Article  CAS  Google Scholar 

  41. Aerbajinai, W., Ishihara, T., Arahata, K. & Tsukahara, T. Increased expression level of the splicing variant of SIP1 in motor neuron diseases. Int. J. Biochem. Cell Biol. 34, 699–707 (2002).

    Article  CAS  Google Scholar 

  42. Misao, R., Nakanishi, Y., Fujimoto, J. & Tamaya, T. Expression of sex hormone-binding globulin exon VII splicing variant messenger RNA in human uterine endometrial cancers. Cancer Res. 57, 5579–5583 (1997).

    CAS  Google Scholar 

  43. Kim, E., Goren, A. & Ast, G. Insights into the connection between cancer and alternative splicing. Trends Genet. 24, 7–10 (2008).

    Article  CAS  Google Scholar 

  44. Roy, M., Xu, Q. & Lee, C. Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res. 33, 5026–5033 (2005).

    Article  CAS  Google Scholar 

  45. Harper, S.J. & Bates, D.O. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat. Rev. Cancer 8, 880–887 (2008).

    Article  CAS  Google Scholar 

  46. Philippar, U. et al. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev. Cell 15, 813–828 (2008).

    Article  CAS  Google Scholar 

  47. Das, D. et al. A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Res. 35, 4845–4857 (2007).

    Article  CAS  Google Scholar 

  48. Radisky, D.C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    Article  CAS  Google Scholar 

  49. Coulter, L.R., Landree, M.A. & Cooper, T.A. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol. Cell. Biol. 17, 2143–2150 (1997).

    Article  CAS  Google Scholar 

  50. Yeo, G.W., Nostrand, E.L. & Liang, T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 3, e85 (2007).

    Article  Google Scholar 

  51. Minovitsky, S., Gee, S.L., Schokrpur, S., Dubchak, I. & Conboy, J.G. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res. 33, 714–724 (2005).

    Article  CAS  Google Scholar 

  52. Sugnet, C.W. et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput. Biol. 2, e4 (2006).

    Article  Google Scholar 

  53. Norris, J.D., Fan, D., Sherk, A. & McDonnell, D.P. A negative coregulator for the human ER. Mol. Endocrinol. 16, 459–468 (2002).

    Article  CAS  Google Scholar 

  54. Baklouti, F. Dual functions of oncogenes in transcription and pre-mRNA spliciing regulation. in Alternative Splicing in Cancer (ed. Venables, J.P.) 235–252 (Transworld Research Network, Trivandrum, India, 2006).

    Google Scholar 

  55. Reyal, F. et al. A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res. 10, R93 (2008).

    Article  Google Scholar 

  56. Mauger, D.M., Lin, C. & Garcia-Blanco, M.A. hnRNP H and hnRNP F complex with Fox2 to silence fibroblast growth factor receptor 2 exon IIIc. Mol. Cell. Biol. 28, 5403–5419 (2008).

    Article  CAS  Google Scholar 

  57. Kuroyanagi, H., Ohno, G., Mitani, S. & Hagiwara, M. The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo . Mol. Cell. Biol. 27, 8612–8621 (2007).

    Article  CAS  Google Scholar 

  58. Bailey, T.L. Discovering novel sequence motifs with MEME. Curr. Protoc. Bioinformatics Unit 2.4 (2002).

  59. Lim, L.P. & Burge, C.B. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl. Acad. Sci. USA 98, 11193–11198 (2001).

    Article  CAS  Google Scholar 

  60. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to D. Namroud, C. Richard and M. Lévesque for administrative support. Thanks also to J.-P. Brosseau, B. Bell and H. Nwilati for comments on the manuscript. This work was funded by a grant from Genome Canada and Génome Québec. B.C. is supported by a Canada Research Chair in Functional Genomics. S.A.E. is supported by the Fonds de la Recherche en Santé du Québec (FRSQ) Chercheur National program. Tumor banking was supported by the Banque de tissus et de données of the Réseau de Recherche sur le Cancer of the FRSQ.

Author information

Authors and Affiliations

Authors

Contributions

J.P.V., R.K., P.P., B.C. and S.A.E. designed experiments, analyzed data and participated in the writing of the paper; K.T. designed and supervised experiments; C.R. selected and provided tissues; A.B., L.I., M.D., S.C., U.F. and E.L. carried out experiments; C.K., J.G.-B., J.-F.L. and P.T. analyzed data.

Corresponding author

Correspondence to Sherif Abou Elela.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 3 (PDF 2599 kb)

Supplementary Table 2

Excel file (XLS 1169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venables, J., Klinck, R., Koh, C. et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 16, 670–676 (2009). https://doi.org/10.1038/nsmb.1608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing