Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bases in the anticodon loop of tRNAAlaGGC prevent misreading

Abstract

The bases at positions 32 and 38 in the tRNA anticodon loop are known to have a specific conservation depending upon the anticodon triplets. Here we report that evolutionarily conserved pairs of bases at positions 32 and 38 in tRNAAlaGGC prevent misreading of a near-cognate valine codon, GUC. The tRNAAlaGGC molecules with the conserved A32-U38 and C32-G38 pairs do not read GUC, whereas those with three representative nonconserved pairs, U32-U38, U32-A38 and C32-A38, direct the misincorporation of alanine at this valine codon into the peptide chain. Overexpression of the nonconserved tRNAAlaGGC in Escherichia coli is toxic and prevents cell growth. These results suggested that the bases at positions 32 and 38 in tRNAAlaGGC evolved to preserve the fidelity of the cognate codon reading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of wild-type tRNAAlaGGC and its variants
Figure 2: Decoding efficiency of the GCC codon by tRNAAlaGGC with the conserved or nonconserved 32-38 pair.
Figure 3: Influence of the sequence variation of the 32-38 pair in tRNAAlaGGC on misreading of GUC codon.
Figure 4: Overexpression of the conserved or nonconserved tRNAAlaGGC in E. coli (BL21).

Similar content being viewed by others

References

  1. Crick, F.H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  2. Calderon, I.L., Contopoulou, C.R. & Mortimer, R.K. Isolation of a DNA fragment that is expressed as an amber suppressor when present in high copy number in yeast. Gene 29, 69–76 (1984).

    Article  CAS  Google Scholar 

  3. Pure, G.A., Robinson, G.W., Naumovski, L. & Friedberg, E.C. Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J. Mol. Biol. 183, 31–42 (1985).

    Article  CAS  Google Scholar 

  4. Lin, J.P., Aker, M., Sitney, K.C. & Mortimer, R.K. First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA. Gene 49, 383–388 (1986).

    Article  CAS  Google Scholar 

  5. Weiss, W.A. & Friedberg, E.C. Normal yeast tRNACAGGln can suppress amber codons and is encoded by an essential gene. J. Mol. Biol. 192, 725–735 (1986).

    Article  CAS  Google Scholar 

  6. Weiss, W.A., Edelman, I., Culbertson, M.R. & Friedberg, E.C. Physiological levels of normal tRNACAGGln can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84, 8031–8034 (1987).

    Article  CAS  Google Scholar 

  7. Toth, M.J., Murgola, E.J. & Schimmel, P. Evidence for a unique first position codon-anticodon mismatch in vivo. J. Mol. Biol. 201, 451–454 (1988).

    Article  CAS  Google Scholar 

  8. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

    Article  CAS  Google Scholar 

  9. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  10. Schultz, D.W. & Yarus, M. tRNA structure and ribosomal function. I. tRNA nucleotide 27–43 mutations enhance first position wobble. J. Mol. Biol. 235, 1381–1394 (1994).

    Article  CAS  Google Scholar 

  11. Schultz, D.W. & Yarus, M. tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations. J. Mol. Biol. 235, 1395–1405 (1994).

    Article  CAS  Google Scholar 

  12. Takai, K. & Yokoyama, S. Roles of 5-substituents of tRNA wobble uridines in the recognition of purine-ending codons. Nucleic Acids Res. 31, 6383–6391 (2003).

    Article  CAS  Google Scholar 

  13. Agris, P.F., Vendeix, F.A. & Graham, W.D. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1–13 (2007).

    Article  CAS  Google Scholar 

  14. Lustig, F. et al. Codon discrimination and anticodon structural context. Proc. Natl. Acad. Sci. USA 86, 6873–6877 (1989).

    Article  CAS  Google Scholar 

  15. Lustig, F. et al. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc. Natl. Acad. Sci. USA 90, 3343–3347 (1993).

    Article  CAS  Google Scholar 

  16. Yarus, M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science 218, 646–652 (1982).

    Article  CAS  Google Scholar 

  17. Raftery, L.A. & Yarus, M. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor. J. Mol. Biol. 184, 343–345 (1985).

    Article  CAS  Google Scholar 

  18. Yarus, M., Cline, S.W., Wier, P., Breeden, L. & Thompson, R.C. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J. Mol. Biol. 192, 235–255 (1986).

    Article  CAS  Google Scholar 

  19. Raftery, L.A. & Yarus, M. Systematic alterations in the anticodon arm make tRNAGlu-Suoc a more efficient suppressor. EMBO J. 6, 1499–1506 (1987).

    Article  CAS  Google Scholar 

  20. Smith, D., Breeden, L., Farrell, E. & Yarus, M. The bases of the tRNA anticodon loop are independent by genetic criteria. Nucleic Acids Res. 15, 4669–4686 (1987).

    Article  CAS  Google Scholar 

  21. Olejniczak, M. & Uhlenbeck, O.C. tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. Biochimie 88, 943–950 (2006).

    Article  CAS  Google Scholar 

  22. Olejniczak, M., Dale, T., Fahlman, R.P. & Uhlenbeck, O.C. Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat. Struct. Mol. Biol. 12, 788–793 (2005).

    Article  CAS  Google Scholar 

  23. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  Google Scholar 

  24. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  Google Scholar 

  25. Hou, Y.M. & Schimmel, P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333, 140–145 (1988).

    Article  CAS  Google Scholar 

  26. Francklyn, C. & Schimmel, P. Aminoacylation of RNA minihelices with alanine. Nature 337, 478–481 (1989).

    Article  CAS  Google Scholar 

  27. Tamura, K., Asahara, H., Himeno, H., Hasegawa, T. & Shimizu, M. Identity elements of Escherichia coli tRNAAla. J. Mol. Recognit. 4, 129–132 (1991).

    Article  CAS  Google Scholar 

  28. Normanly, J., Ogden, R.C., Horvath, S.J. & Abelson, J. Changing the identity of a transfer RNA. Nature 321, 213–219 (1986).

    Article  CAS  Google Scholar 

  29. Asahara, H. et al. Recognition nucleotides of Escherichia coli tRNALeu and its elements facilitating discrimination from tRNASer and tRNATyr. J. Mol. Biol. 231, 219–229 (1993).

    Article  CAS  Google Scholar 

  30. Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S. & Cusack, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Nat. Struct. Mol. Biol. 12, 923–930 (2005).

    Article  CAS  Google Scholar 

  31. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  Google Scholar 

  32. Rodnina, M.V. & Wintermeyer, W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 26, 124–130 (2001).

    Article  CAS  Google Scholar 

  33. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    Article  CAS  Google Scholar 

  34. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  Google Scholar 

  35. Ledoux, S., Olejniczak, M. & Uhlenbeck, O.C. A sequence element that tunes Escherichia coli tRNAAlaGGC to ensure accurate decoding. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.1581 (22 March 2009).

  36. Auffinger, P. & Westhof, E. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J. Mol. Biol. 292, 467–483 (1999).

    Article  CAS  Google Scholar 

  37. Saks, M.E. & Conery, J.S. Anticodon-dependent conservation of bacterial tRNA gene sequences. RNA 13, 651–660 (2007).

    Article  CAS  Google Scholar 

  38. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  39. Shimizu, Y., Kanamori, T. & Ueda, T. Protein synthesis by pure translation systems. Methods 36, 299–304 (2005).

    Article  CAS  Google Scholar 

  40. Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).

    Article  CAS  Google Scholar 

  41. Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).

    Article  CAS  Google Scholar 

  42. Sako, Y., Goto, Y., Murakami, H. & Suga, H. Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond. ACS Chem. Biol. 3, 241–249 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O.C. Uhlenbeck and S. Ledoux for their invaluable discussion. This work was supported by grants from the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (S) (16101007) to H.S., a Young Scientists (A) (20681022) to H.M., a JSPS Fellowship (19-1722) to A.O., a research and development project of the Industrial Science and Technology Program in the New Energy and Industrial Technology Development Organization (NEDO) to H.S., the Industrial Technology Research Grant Program in NEDO (05A02513a) to H.M., and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by H.M., A.O. and H.S.; all of the experiments were performed by H.M.; the paper was written by H.M. and H.S.

Corresponding authors

Correspondence to Hiroshi Murakami or Hiroaki Suga.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 4508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, H., Ohta, A. & Suga, H. Bases in the anticodon loop of tRNAAlaGGC prevent misreading. Nat Struct Mol Biol 16, 353–358 (2009). https://doi.org/10.1038/nsmb.1580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing