Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping a molecular link between allosteric inhibition and activation of the glycine receptor

Abstract

Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn2+-inhibition site. Mutating these hydrophobic residues disrupted Zn2+ inhibition, generating novel Zn2+-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '−' loop face of the Zn2+-inhibition site, and to D84 and D86, on a neighboring β3 strand, forming a Zn2+-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrophobic determinants of Zn2+ inhibition.
Figure 2: Direct Zn2+ activation of substituted GlyRs.
Figure 3: Zn2+ inhibition and Zn2+ activation in GlyRs with conservative substitutions.
Figure 4: Identifying potential residues for the Zn2+-activation binding site in ZAGs.
Figure 5: Zn2+ activation of GlyRs lacking a high-affinity glycine binding site.
Figure 6: Spontaneous activation of alanine-substituted receptors.
Figure 7: Spontaneous channel activation mimics agonist-induced activation.
Figure 8: Zn2+ and spontaneous channel activation originates via the Zn2+-inhibition site '−' loop face.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article  CAS  Google Scholar 

  2. Brejc, K. et al. Crystal structure of an Ach-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  Google Scholar 

  3. Chen, Y., Reilly, K. & Chang, Y. Evolutionarily conserved allosteric network in the Cys loop family of ligand-gated ion channels revealed by statistical covariance analyses. J. Biol. Chem. 281, 18184–18192 (2006).

    Article  CAS  Google Scholar 

  4. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  Google Scholar 

  5. Corringer, P.J., Le, N.N. & Changeux, J.P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458 (2000).

    Article  CAS  Google Scholar 

  6. Lester, H.A., Dibas, M.I., Dahan, D.S., Leite, J.F. & Dougherty, D.A. Cys-loop receptors: new twists and turns. Trends Neurosci. 27, 329–336 (2004).

    Article  CAS  Google Scholar 

  7. Sine, S.M. & Engel, A.G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448–455 (2006).

    Article  CAS  Google Scholar 

  8. Law, R.J., Henchman, R.H. & McCammon, J.A. A gating mechanism proposed from a simulation of a human α7 nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 102, 6813–6818 (2005).

    Article  CAS  Google Scholar 

  9. Celie, P.H. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004).

    Article  CAS  Google Scholar 

  10. Lyford, L.K., Sproul, A.D., Eddins, D., McLaughlin, J.T. & Rosenberg, R.L. Agonist-induced conformational changes in the extracellular domain of α7 nicotinic acetylcholine receptors. Mol. Pharmacol. 64, 650–658 (2003).

    Article  CAS  Google Scholar 

  11. McLaughlin, J.T., Fu, J., Sproul, A.D. & Rosenberg, R.L. Role of the outer β-sheet in divalent cation modulation of α7 nicotinic receptors. Mol. Pharmacol. 70, 16–22 (2006).

    CAS  PubMed  Google Scholar 

  12. McLaughlin, J.T., Fu, J. & Rosenberg, R.L. Agonist-driven conformational changes in the inner β-sheet of α7 nicotinic receptors. Mol. Pharmacol. 71, 1312–1318 (2007).

    Article  CAS  Google Scholar 

  13. Purohit, P. & Auerbach, A. Acetylcholine receptor gating: movement in the α-subunit extracellular domain. J. Gen. Physiol. 130, 569–579 (2007).

    Article  CAS  Google Scholar 

  14. Dellisanti, C.D., Yao, Y., Stroud, J.C., Wang, Z.Z. & Chen, L. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 resolution. Nat. Neurosci. 10, 953–962 (2007).

    Article  CAS  Google Scholar 

  15. Chakrapani, S., Bailey, T.D. & Auerbach, A. Gating dynamics of the acetylcholine receptor extracellular domain. J. Gen. Physiol. 123, 341–356 (2004).

    Article  CAS  Google Scholar 

  16. Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J. Mol. Biol. 319, 1165–1176 (2002).

    Article  CAS  Google Scholar 

  17. McLaughlin, J.T., Fu, J. & Rosenberg, R.L. Agonist-driven conformational changes in the inner β-sheet of α7 nicotinic receptors. Mol. Pharmacol. 71, 1312–1318 (2007).

    Article  CAS  Google Scholar 

  18. Taly, A. et al. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc. Natl. Acad. Sci. USA 103, 16965–16970 (2006).

    Article  CAS  Google Scholar 

  19. Mukhtasimova, N. & Sine, S.M. An intersubunit trigger of channel gating in the muscle nicotinic receptor. J. Neurosci. 27, 4110–4119 (2007).

    Article  CAS  Google Scholar 

  20. Hirzel, K. et al. Hyperekplexia phenotype of glycine receptor α1 subunit mutant mice identifies Zn2+ as an essential endogenous modulator of glycinergic neurotransmission. Neuron 52, 679–690 (2006).

    Article  CAS  Google Scholar 

  21. Bloomenthal, A.B., Goldwater, E., Pritchett, D.B. & Harrison, N.L. Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol. Pharmacol. 46, 1156–1159 (1994).

    CAS  PubMed  Google Scholar 

  22. Laube, B. et al. Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J. Physiol. (Lond.) 483, 613–619 (1995).

    Article  CAS  Google Scholar 

  23. Miller, P.S., Da Silva, H.M. & Smart, T.G. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors. J. Biol. Chem. 280, 37877–37884 (2005).

    Article  CAS  Google Scholar 

  24. Harvey, R.J., Thomas, P., James, C.H., Wilderspin, A. & Smart, T.G. Identification of an inhibitory Zn2+ binding site on the human glycine receptor α1 subunit. J. Physiol. (Lond.) 520, 53–64 (1999).

    Article  CAS  Google Scholar 

  25. Nevin, S.T. et al. Insights into the structural basis for zinc inhibition of the glycine receptor. J. Biol. Chem. 278, 28985–28992 (2003).

    Article  CAS  Google Scholar 

  26. Miller, P.S., Beato, M., Harvey, R.J. & Smart, T.G. Molecular determinants of glycine receptor αβ subunit sensitivities to Zn2+-mediated inhibition. J. Physiol. 566, 657–670 (2005).

    Article  CAS  Google Scholar 

  27. Celie, P.H. et al. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant. Nat. Struct. Mol. Biol. 12, 582–588 (2005).

    Article  CAS  Google Scholar 

  28. Fu, D.X. & Sine, S.M. Asymmetric contribution of the conserved disulfide loop to subunit oligomerization and assembly of the nicotinic acetylcholine receptor. J. Biol. Chem. 271, 31479–31484 (1996).

    Article  CAS  Google Scholar 

  29. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  30. Han, N.L., Haddrill, J.L. & Lynch, J.W. Characterization of a glycine receptor domain that controls the binding and gating mechanisms of the β-amino acid agonist, taurine. J. Neurochem. 79, 636–647 (2001).

    Article  CAS  Google Scholar 

  31. Laube, B., Kuhse, J. & Betz, H. Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors. J. Physiol. (Lond.) 522, 215–230 (2000).

    Article  CAS  Google Scholar 

  32. Auld, D.S. Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271–313 (2001).

    Article  CAS  Google Scholar 

  33. Cashin, A.L., Torrice, M.M., McMenimen, K.A., Lester, H.A. & Dougherty, D.A. Chemical-scale studies on the role of a conserved aspartate in preorganizing the agonist binding site of the nicotinic acetylcholine receptor. Biochemistry 46, 630–639 (2007).

    Article  CAS  Google Scholar 

  34. Lerma, J., Zukin, R.S. & Bennett, M.V. Glycine decreases desensitization of N–methyl–D–aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc. Natl. Acad. Sci. USA 87, 2354–2358 (1990).

    Article  CAS  Google Scholar 

  35. Grudzinska, J. et al. The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45, 727–739 (2005).

    Article  CAS  Google Scholar 

  36. Wilkins, M.E. & Smart, T.G. Redox modulation of GABAA receptors obscured by Zn2+ complexation. Neuropharmacology 43, 938–944 (2002).

    Article  CAS  Google Scholar 

  37. Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. Openings of the rat recombinant α 1 homomeric glycine receptor as a function of the number of agonist molecules bound. J. Gen. Physiol. 119, 443–466 (2002).

    Article  CAS  Google Scholar 

  38. Shen, M.Y. & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006).

    Article  CAS  Google Scholar 

  39. Creighton, T.E. The energetic ups and downs of protein folding. Nat. Struct. Biol. 1, 135–138 (1994).

    Article  CAS  Google Scholar 

  40. Yaron, A. & Naider, F. Proline-dependent structural and biological properties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol. 28, 31–81 (1993).

    Article  CAS  Google Scholar 

  41. Mukhtasimova, N. & Sine, S.M. An intersubunit trigger of channel gating in the muscle nicotinic receptor. J. Neurosci. 27, 4110–4119 (2007).

    Article  CAS  Google Scholar 

  42. Kash, T.L., Jenkins, A., Kelley, J.C., Trudell, J.R. & Harrison, N.L. Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421, 272–275 (2003).

    Article  CAS  Google Scholar 

  43. Lee, W.Y. & Sine, S.M. Principal pathway coupling agonist binding to channel gating in nicotinic receptors. Nature 438, 243–247 (2005).

    Article  CAS  Google Scholar 

  44. Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  Google Scholar 

  45. Boileau, A.J., Newell, J.G. & Czajkowski, C. GABAA receptor β2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions. J. Biol. Chem. 277, 2931–2937 (2002).

    Article  CAS  Google Scholar 

  46. Chakrapani, S., Bailey, T.D. & Auerbach, A. The role of loop 5 in acetylcholine receptor channel gating. J. Gen. Physiol. 122, 521–539 (2003).

    Article  CAS  Google Scholar 

  47. Grosman, C., Zhou, M. & Auerbach, A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403, 773–776 (2000).

    Article  CAS  Google Scholar 

  48. Padgett, C.L., Hanek, A.P., Lester, H.A., Dougherty, D.A. & Lummis, S.C. Unnatural amino acid mutagenesis of the GABAA receptor binding site residues reveals a novel cation–π interaction between GABA and β2Tyr97. J. Neurosci. 27, 886–892 (2007).

    Article  CAS  Google Scholar 

  49. Henchman, R.H., Wang, H.L., Sine, S.M., Taylor, P. & McCammon, J.A. Ligand-induced conformational change in the α7 nicotinic receptor ligand binding domain. Biophys. J. 88, 2564–2576 (2005).

    Article  CAS  Google Scholar 

  50. Schmieden, V., Kuhse, J. & Betz, H. A novel domain of the inhibitory glycine receptor determining antagonist efficacies: further evidence for partial agonism resulting from self-inhibition. Mol. Pharmacol. 56, 464–472 (1999).

    Article  CAS  Google Scholar 

  51. Chang, Y. & Weiss, D.S. Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism. Nat. Neurosci. 5, 1163–1168 (2002).

    Article  CAS  Google Scholar 

  52. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

    Article  CAS  Google Scholar 

  53. Colquhoun, D. & Sakmann, B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (Lond.) 369, 501–557 (1985).

    Article  CAS  Google Scholar 

  54. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  55. Shindyalov, I.N. & Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747 (1998).

    Article  CAS  Google Scholar 

  56. Pettersen, E.F. et al. UCSF Chimera––a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  57. Canutescu, A.A., Shelenkov, A.A. & Dunbrack, R.L., Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12, 2001–2014 (2003).

    Article  CAS  Google Scholar 

  58. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  59. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Counsil, the Biotechnology and Biological Sciences Research Council and the Wellcome Trust. We thank A. Hosie, P. Thomas and M. Wilkins for helpful comments and H. Da Silva for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G Smart.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–6 (PDF 3303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, P., Topf, M. & Smart, T. Mapping a molecular link between allosteric inhibition and activation of the glycine receptor. Nat Struct Mol Biol 15, 1084–1093 (2008). https://doi.org/10.1038/nsmb.1492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1492

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing