Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane-dependent signal integration by the Ras activator Son of sevenless

An Erratum to this article was published on 01 June 2008

This article has been updated

Abstract

The kinetics of Ras activation by Son of sevenless (SOS) changes profoundly when Ras is tethered to membranes, instead of being in solution. SOS has two binding sites for Ras, one of which is an allosteric site that is distal to the active site. The activity of the SOS catalytic unit (SOScat) is up to 500-fold higher when Ras is on membranes compared to rates in solution, because the allosteric Ras site anchors SOScat to the membrane. This effect is blocked by the N-terminal segment of SOS, which occludes the allosteric site. We show that SOS responds to the membrane density of Ras molecules, to their state of GTP loading and to the membrane concentration of phosphatidylinositol-4,5-bisphosphate (PIP2), and that the integration of these signals potentiates the release of autoinhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SOS structure.
Figure 2: The rate of SOScat-catalyzed nucleotide exchange is increased dramatically when Ras is tethered to membranes.
Figure 3: The membrane-dependent increase in the rate of SOScat-catalyzed Ras exchange is a function of the surface density of Ras.
Figure 4: Membrane localization of SOScat by allosteric Ras binding in cells.
Figure 5: The substrate Ras molecule and the activating Ras molecule both need to be tethered to the membrane for maximal SOS activity.
Figure 6: Activity of SOS constructs containing N-terminal regulatory domains.
Figure 7: PIP2-dependent activation of SOS.
Figure 8: The Noonan syndrome mutant, SOSHDPC(R552G), is responsive to the membrane density of PIP2.
Figure 9: The integration of several membrane-localization signals in the activation of Ras and SOS.

Similar content being viewed by others

Change history

  • 15 May 2008

    In the version of this article initially published, the concentration units reported in Figure 7b,c should be nM, not nm. The green data series in Figure 7b should be labeled “SOScat”. In addition, on page 452 of the article, the affiliation address for William J. Galush and Jay T. Groves was incorrect. Their correct address is Department of Chemistry, University of California, Berkeley, California 94720, USA. Finally, the last sentence of the Acknowledgments listed incorrect funding information. The last sentence should read, “J.T.G. and W.J.G. are supported by Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE_AC03-76SF00098, and D.B.-S. by NIH GM078266.” These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Pawson, T. & Scott, J.D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  Google Scholar 

  2. Kholodenko, B.N., Hoek, J.B. & Westerhoff, H.V. Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol. 10, 173–178 (2000).

    Article  CAS  Google Scholar 

  3. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    Article  CAS  Google Scholar 

  4. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  5. Quilliam, L.A. New insights into the mechanisms of SOS activation. Sci. STKE 2007, pe67 (2007).

    Article  Google Scholar 

  6. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    Article  CAS  Google Scholar 

  7. Aronheim, A. et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949–961 (1994).

    Article  CAS  Google Scholar 

  8. Margarit, S.M. et al. Structural evidence for feedback activation by Ras·GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  Google Scholar 

  9. Freedman, T.S. et al. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc. Natl. Acad. Sci. USA 103, 16692–16697 (2006).

    Article  CAS  Google Scholar 

  10. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  Google Scholar 

  11. Boykevisch, S. et al. Regulation of Ras signaling dynamics by Sos-mediated positive feedback. Curr. Biol. 16, 2173–2179 (2006).

    Article  CAS  Google Scholar 

  12. Roose, J.P., Mollenauer, M., Ho, M., Kurosaki, T. & Weiss, A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol. Cell. Biol. 27, 2732–2745 (2007).

    Article  CAS  Google Scholar 

  13. Soisson, S.M., Nimnual, A.S., Uy, M., Bar-Sagi, D. & Kuriyan, J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 95, 259–268 (1998).

    Article  CAS  Google Scholar 

  14. Zheng, J. et al. The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains. J. Biol. Chem. 272, 30340–30344 (1997).

    Article  CAS  Google Scholar 

  15. Kubiseski, T.J., Chook, Y.M., Parris, W.E., Rozakis-Adcock, M. & Pawson, T. High affinity binding of the pleckstrin homology domain of mSos1 to phosphatidylinositol (4,5)-bisphosphate. J. Biol. Chem. 272, 1799–1804 (1997).

    Article  CAS  Google Scholar 

  16. Koshiba, S. et al. The solution structure of the pleckstrin homology domain of mouse Son-of-sevenless 1 (mSos1). J. Mol. Biol. 269, 579–591 (1997).

    Article  CAS  Google Scholar 

  17. Chen, R.H., Corbalan-Garcia, S. & Bar-Sagi, D. The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 16, 1351–1359 (1997).

    Article  CAS  Google Scholar 

  18. Zhao, C., Du, G., Skowronek, K., Frohman, M.A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 707–712 (2007).

    Article  Google Scholar 

  19. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620 (1993).

    Article  CAS  Google Scholar 

  20. Egan, S.E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  Google Scholar 

  21. Gale, N.W., Kaplan, S., Lowenstein, E.J., Schlessinger, J. & Bar-Sagi, D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363, 88–92 (1993).

    Article  CAS  Google Scholar 

  22. Li, N. et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85–88 (1993).

    Article  CAS  Google Scholar 

  23. Sondermann, H., Soisson, S.M., Bar-Sagi, D. & Kuriyan, J. Tandem histone folds in the structure of the N-terminal segment of the ras activator Son of Sevenless. Structure 11, 1583–1593 (2003).

    Article  CAS  Google Scholar 

  24. Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution X-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator Son of sevenless. Proc. Natl. Acad. Sci. USA 102, 16632–16637 (2005).

    Article  CAS  Google Scholar 

  25. Tartaglia, M. & Gelb, B.D. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68 (2005).

    Article  CAS  Google Scholar 

  26. Roberts, A.E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 39, 70–74 (2007).

    Article  CAS  Google Scholar 

  27. Tartaglia, M. et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. 39, 75–79 (2007).

    Article  CAS  Google Scholar 

  28. McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–117 (2000).

    Article  CAS  Google Scholar 

  29. Pechlivanis, M., Ringel, R., Popkirova, B. & Kuhlmann, J. Prenylation of Ras facilitates hSOS1-promoted nucleotide exchange, upon Ras binding to the regulatory site. Biochemistry 46, 5341–5348 (2007).

    Article  CAS  Google Scholar 

  30. Lenzen, C., Cool, R.H. & Wittinghofer, A. Analysis of intrinsic and CDC25-stimulated guanine nucleotide exchange of p21ras-nucleotide complexes by fluorescence measurements. Methods Enzymol. 255, 95–109 (1995).

    Article  CAS  Google Scholar 

  31. Guo, Z., Ahmadian, M.R. & Goody, R.S. Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism. Biochemistry 44, 15423–15429 (2005).

    Article  CAS  Google Scholar 

  32. Ahmadian, M.R., Wittinghofer, A. & Herrmann, C. Fluorescence methods in the study of small GTP-binding proteins. Methods Mol. Biol. 189, 45–63 (2002).

    CAS  PubMed  Google Scholar 

  33. Groves, J.T. & Dustin, M.L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278, 19–32 (2003).

    Article  CAS  Google Scholar 

  34. Scheele, J.S., Rhee, J.M. & Boss, G.R. Determination of absolute amounts of GDP and GTP bound to Ras in mammalian cells: comparison of parental and Ras-overproducing NIH 3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 92, 1097–1100 (1995).

    Article  CAS  Google Scholar 

  35. Tian, T. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 9, 905–914 (2007).

    Article  CAS  Google Scholar 

  36. Plowman, S.J., Muncke, C., Parton, R.G. & Hancock, J.F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  Google Scholar 

  37. Lenzen, C., Cool, R.H., Prinz, H., Kuhlmann, J. & Wittinghofer, A. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry 37, 7420–7430 (1998).

    Article  CAS  Google Scholar 

  38. Mor, A. et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat. Cell Biol. 9, 713–719 (2007).

    Article  CAS  Google Scholar 

  39. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  Google Scholar 

  40. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    Article  CAS  Google Scholar 

  41. Papayannopoulos, V. et al. A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol. Cell 17, 181–191 (2005).

    Article  CAS  Google Scholar 

  42. Buck, M., Xu, W. & Rosen, M.K. A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting. J. Mol. Biol. 338, 271–285 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Freedman, O. Kuchment, N. Endres, X. Zhang and M. Lamers for helpful discussions; and D. King for MS. J.G. is supported by the Molecular Biophysics US National Institutes of Health (NIH) grant T32 GM008295. J.T.G. and W.J.G. are supported by Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE_AC03-76SF00098, and D.B.-S. by NIH GM078266.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dafna Bar-Sagi, Jay T Groves or John Kuriyan.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods and Supplementary Discussion (PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gureasko, J., Galush, W., Boykevisch, S. et al. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol 15, 452–461 (2008). https://doi.org/10.1038/nsmb.1418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing