Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis

Abstract

In prokaryotes, the transfer of DNA between cellular compartments is essential for the segregation and exchange of genetic material. SpoIIIE and FtsK are AAA+ ATPases responsible for intercompartmental chromosome translocation in bacteria. Despite functional and sequence similarities, these motors were proposed to use drastically different mechanisms: SpoIIIE was suggested to be a unidirectional DNA transporter that exports DNA from the compartment in which it assembles, whereas FtsK was shown to establish translocation directionality by interacting with highly skewed chromosomal sequences. Here we use a combination of single-molecule, bioinformatics and in vivo fluorescence methodologies to study the properties of DNA translocation by SpoIIIE in vitro and in vivo. These data allow us to propose a sequence-directed DNA exporter model that reconciles previously proposed models for SpoIIIE and FtsK, constituting a unified model for directional DNA transport by the SpoIIIE/FtsK family of AAA+ ring ATPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of SpoIIIE and FtsK monomers and models for DNA translocation directionality.
Figure 2: SpoIIIE-γ is necessary for efficient sporulation but does not affect motor function.
Figure 3: Identification and characterization of a SpoIIIE recognition sequence (SRS).
Figure 4: γ-domains are modular and can be switched between species to confer altered DNA sequence specificities.
Figure 5: Cell-specific GFP tagging indicates that SpoIIIE-Δγ assembles on both sides of the sporulation septum with equal frequency.
Figure 6: Model for SpoIIIE sequence-directed DNA export during sporulation.

Similar content being viewed by others

References

  1. Ryter, A. Morphologic study of the sporulation of Bacillus subtilis. Ann. Inst. Pasteur (Paris) 108, 40–60 (1965).

    CAS  Google Scholar 

  2. Thomaides, H.B., Freeman, M., El Karoui, M. & Errington, J. Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev. 15, 1662–1673 (2001).

    Article  CAS  Google Scholar 

  3. Levin, P.A. & Losick, R. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10, 478–488 (1996).

    Article  CAS  Google Scholar 

  4. Pogliano, J., Sharp, M.D. & Pogliano, K. Partitioning of chromosomal DNA during establishment of cellular asymmetry in Bacillus subtilis. J. Bacteriol. 184, 1743–1749 (2002).

    Article  CAS  Google Scholar 

  5. Wu, L.J. & Errington, J. Bacillus subtilis spoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994).

    Article  CAS  Google Scholar 

  6. Wu, L.J., Lewis, P.J., Allmansberger, R., Hauser, P.M. & Errington, J. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9, 1316–1326 (1995).

    Article  CAS  Google Scholar 

  7. Bath, J., Wu, L.J., Errington, J. & Wang, J.C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290, 995–997 (2000).

    Article  CAS  Google Scholar 

  8. Sharpe, M.E. & Errington, J. Postseptational chromosome partitioning in bacteria. Proc. Natl. Acad. Sci. USA 92, 8630–8634 (1995).

    Article  CAS  Google Scholar 

  9. Britton, R.A. & Grossman, A.D. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181, 5860–5864 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lemon, K.P. & Grossman, A.D. Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98, 212–217 (2001).

    CAS  PubMed  Google Scholar 

  11. Liu, G., Draper, G.C. & Donachie, W.D. FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol. Microbiol. 29, 893–903 (1998).

    Article  CAS  Google Scholar 

  12. Iyer, L.M., Makarova, K.S., Koonin, E.V. & Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 32, 5260–5279 (2004).

    Article  CAS  Google Scholar 

  13. Capiaux, H., Lesterlin, C., Perals, K., Louarn, J.M. & Cornet, F. A dual role for the FtsK protein in Escherichia coli chromosome segregation. EMBO Rep. 3, 532–536 (2002).

    Article  CAS  Google Scholar 

  14. Wu, L.J. & Errington, J. Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J. 16, 2161–2169 (1997).

    Article  CAS  Google Scholar 

  15. Wang, L. & Lutkenhaus, J. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29, 731–740 (1998).

    Article  CAS  Google Scholar 

  16. Yu, X.C., Tran, A.H., Sun, Q. & Margolin, W. Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J. Bacteriol. 180, 1296–1304 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Massey, T.H., Mercogliano, C.P., Yates, J., Sherratt, D.J. & Lowe, J. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol. Cell 23, 457–469 (2006).

    Article  CAS  Google Scholar 

  18. Bigot, S. et al. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J. 24, 3770–3780 (2005).

    Article  CAS  Google Scholar 

  19. Levy, O. et al. Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc. Natl. Acad. Sci. USA 102, 17618–17623 (2005).

    Article  CAS  Google Scholar 

  20. Pease, P.J. et al. Sequence-directed DNA translocation by purified FtsK. Science 307, 586–590 (2005).

    Article  CAS  Google Scholar 

  21. Sharp, M.D. & Pogliano, K. Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science 295, 137–139 (2002).

    Article  CAS  Google Scholar 

  22. Sharp, M.D. & Pogliano, K. MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer. EMBO J. 21, 6267–6274 (2002).

    Article  CAS  Google Scholar 

  23. Becker, E.C. & Pogliano, K. Cell-specific SpoIIIE assembly and DNA translocation polarity are dictated by chromosome orientation. Mol. Microbiol. 66, 1066–1079 (2007).

    Article  CAS  Google Scholar 

  24. Partridge, S.R. & Errington, J. The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8, 945–955 (1993).

    Article  CAS  Google Scholar 

  25. Lewis, P.J., Partridge, S.R. & Errington, J. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91, 3849–3853 (1994).

    Article  CAS  Google Scholar 

  26. Pogliano, J. et al. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1149–1159 (1999).

    Article  CAS  Google Scholar 

  27. Ptacin, J.L., Nollmann, M., Bustamante, C. & Cozzarelli, N.R. Identification of the FtsK sequence-recognition domain. Nat. Struct. Mol. Biol. 13, 1023–1025 (2006).

    Article  CAS  Google Scholar 

  28. Sivanathan, V. et al. The FtsK γ domain directs oriented DNA translocation by interacting with KOPS. Nat. Struct. Mol. Biol. 13, 965–972 (2006).

    Article  CAS  Google Scholar 

  29. Bigot, S., Saleh, O.A., Cornet, F., Allemand, J.F. & Barre, F.X. Oriented loading of FtsK on KOPS. Nat. Struct. Mol. Biol. 13, 1026–1028 (2006).

    Article  CAS  Google Scholar 

  30. Griffiths, A.A. & Wake, R.G. Search for additional replication terminators in the Bacillus subtilis 168 chromosome. J. Bacteriol. 179, 3358–3361 (1997).

    Article  CAS  Google Scholar 

  31. Sciochetti, S.A., Piggot, P.J. & Blakely, G.W. Identification and characterization of the dif site from Bacillus subtilis. J. Bacteriol. 183, 1058–1068 (2001).

    Article  CAS  Google Scholar 

  32. Becker, E. et al. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J. 25, 5919–5931 (2006).

    Article  CAS  Google Scholar 

  33. Hendrickson, H. & Lawrence, J.G. Selection for chromosome architecture in bacteria. J. Mol. Evol. 62, 615–629 (2006).

    Article  CAS  Google Scholar 

  34. Wu, L.J. & Errington, J. A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. EMBO J. 21, 4001–4011 (2002).

    Article  CAS  Google Scholar 

  35. Kohler, J.J. & Schepartz, A. Kinetic studies of FosJunDNA complex formation: DNA binding prior to dimerization. Biochemistry 40, 130–142 (2001).

    Article  CAS  Google Scholar 

  36. Burton, B.M., Marquis, K.A., Sullivan, N.L., Rapoport, T.A. & Rudner, D.Z. The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis. Cell 131, 1301–1312 (2007).

    Article  CAS  Google Scholar 

  37. Pettis, G.S. & Cohen, S.N. Unraveling the essential role in conjugation of the Tra protein of Streptomyces lividans plasmid pIJ101. Antonie Van Leeuwenhoek 79, 247–250 (2001).

    Article  CAS  Google Scholar 

  38. Bigot, S., Sivanathan, V., Possoz, C., Barre, F.X. & Cornet, F. FtsK, a literate chromosome segregation machine. Mol. Microbiol. 64, 1434–1441 (2007).

    Article  CAS  Google Scholar 

  39. Sharpe, M.E. & Errington, J. The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol. Microbiol. 21, 501–509 (1996).

    Article  CAS  Google Scholar 

  40. Wu, L.J. & Errington, J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol. Microbiol. 49, 1463–1475 (2003).

    Article  CAS  Google Scholar 

  41. Ben-Yehuda, S., Rudner, D.Z. & Losick, R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299, 532–536 (2003).

    Article  CAS  Google Scholar 

  42. Ben-Yehuda, S. et al. Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell 17, 773–782 (2005).

    Article  CAS  Google Scholar 

  43. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004).

    Article  CAS  Google Scholar 

  44. McClelland, S.E., Dryden, D.T. & Szczelkun, M.D. Continuous assays for DNA translocation using fluorescent triplex dissociation: application to type I restriction endonucleases. J. Mol. Biol. 348, 895–915 (2005).

    Article  CAS  Google Scholar 

  45. Firman, K. & Szczelkun, M.D. Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement. EMBO J. 19, 2094–2102 (2000).

    Article  CAS  Google Scholar 

  46. Strick, T.R., Allemand, J.F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).

    Article  CAS  Google Scholar 

  47. Perez, A.R., Abanes-De Mello, A. & Pogliano, K. SpoIIB localizes to active sites of septal biogenesis and spatially regulates septal thinning during engulfment in Bacillus subtilis. J. Bacteriol. 182, 1096–1108 (2000).

    Article  CAS  Google Scholar 

  48. Sterlini, J.M. & Mandelstam, J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem. J. 113, 29–37 (1969).

    Article  CAS  Google Scholar 

  49. Hoch, J.A. Genetic analysis in Bacillus subtilis. Methods Enzymol. 204, 305–320 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this work to our friend and colleague Nicholas R. Cozzarelli, who passed away during completion of this research. We thank J. Berger for his continuous advice during this research and N. Crisona for critical reading. This work was supported by National Institutes of Health Grants GM31655 (to N.R.C.) and the Human Frontier Science Program (M.N.).

Author information

Authors and Affiliations

Authors

Contributions

J.L.P. and M.N. planned, collected and interpreted single-molecule, biochemical and fluorescence data; E.C.B. performed time-lapse fluorescence studies of SpoIIIE-SK chimera and compartment-specific GFP-tagging experiments; J.L.P., M.N., E.C.B., K.P. and C.B. wrote the paper.

Corresponding author

Correspondence to Carlos Bustamante.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3, Supplementary Results and Supplementary Methods (PDF 1665 kb)

Supplementary Video 1

DNA is forward translocated into forespore compartment in all events tracked (N=28) and all cells observed (N=243). (MOV 3687 kb)

Supplementary Video 2

Frequently, DNA is initially translocated into the forespore followed by a pause in translocation and subsequent reversal of DNA translocation direction that pumps the chromosome out of the forespore compartment (N=140 out of 349 cells). (MOV 3251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ptacin, J., Nollmann, M., Becker, E. et al. Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat Struct Mol Biol 15, 485–493 (2008). https://doi.org/10.1038/nsmb.1412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing