Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for ubiquitin in the spliceosome assembly pathway

Abstract

The spliceosome uses numerous strategies to regulate its function in mRNA maturation. Ubiquitin regulates many cellular processes, but its potential roles during splicing are unknown. We have developed a new strategy that reveals a direct role for ubiquitin in the dynamics of splicing complexes. A ubiquitin mutant (I44A) that can enter the conjugation pathway but is compromised in downstream functions diminishes splicing activity by reducing the levels of the U4/U6-U5 small nuclear ribonucleoprotein (snRNP). Similarly, an inhibitor of ubiquitin's protein-protein interactions, ubistatin A, reduces U4/U6-U5 triple snRNP levels in vitro. When ubiquitin interactions are blocked, ATP-dependent disassembly of purified U4/U6-U5 particles is accelerated, indicating a direct role for ubiquitin in repressing U4/U6 unwinding. Finally, we show that the conserved splicing factor Prp8 is ubiquitinated within purified triple snRNPs. These results reveal a previously unknown ubiquitin-dependent mechanism for controlling the pre-mRNA splicing pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A mutant form of ubiquitin (Ub) inhibits pre-mRNA splicing activity in vitro.
Figure 2: The U2 snRNP-containing pre-spliceosome accumulates in the presence of I44A ubiquitin.
Figure 3: I44A ubiquitin blocks spliceosome assembly by interfering with U4/U6-U5 triple snRNP accumulation.
Figure 4: The ubiquitin (Ub) binding small molecule ubistatin A recapitulates the inhibitory effects of I44A ubiquitin.
Figure 5: Conjugated mutant I44A ubiquitin or the deubiquitinating cysteine protease USP2 derepresses U4/U6 unwinding in purified U4/U6-U5 snRNPs.
Figure 6: Affinity-purified U4/U6-U5 triple snRNPs contain Prp8-ubiquitin conjugates.
Figure 7: A model for ubiquitin's involvement in U4/U6-U5 triple snRNP accumulation and pre-mRNA splicing.

Similar content being viewed by others

References

  1. Will, C.L. & Lührmann, R. Spliceosome structure and function. in The RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 369–400 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2006).

    Google Scholar 

  2. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  3. Kuhn, A.N., Li, Z. & Brow, D.A. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol. Cell 3, 65–75 (1999).

    Article  CAS  Google Scholar 

  4. Small, E.C., Leggett, S.R., Winans, A.A. & Staley, J.P. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol. Cell 23, 389–399 (2006).

    Article  CAS  Google Scholar 

  5. Misteli, T. RNA splicing: what has phosphorylation got to do with it? Curr. Biol. 9, R198–R200 (1999).

    Article  CAS  Google Scholar 

  6. Pickart, C.M. & Eddins, M.J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  Google Scholar 

  7. Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).

    Article  CAS  Google Scholar 

  8. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  9. Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    Article  CAS  Google Scholar 

  10. Hicke, L., Schubert, H.L. & Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  11. Rappsilber, J., Ryder, U., Lamond, A.I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).

    Article  CAS  Google Scholar 

  12. Makarov, E.M. et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208 (2002).

    Article  CAS  Google Scholar 

  13. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  14. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K.I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276, 33111–33120 (2001).

    Article  CAS  Google Scholar 

  15. Ohi, M.D., Vander Kooi, C.W., Rosenberg, J.A., Chazin, W.J. & Gould, K.L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. Biol. 10, 250–255 (2003).

    Article  CAS  Google Scholar 

  16. Bellare, P., Kutach, A.K., Rines, A.K., Guthrie, C. & Sontheimer, E.J. Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. RNA 12, 292–302 (2006).

    Article  CAS  Google Scholar 

  17. Kramer, A., Mulhauser, F., Wersig, C., Groning, K. & Bilbe, G. Mammalian splicing factor SF3a120 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of Saccharomyces cerevisiae. RNA 1, 260–272 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lygerou, Z., Christophides, G. & Seraphin, B. A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing. Mol. Cell. Biol. 19, 2008–2020 (1999).

    Article  CAS  Google Scholar 

  19. Makarova, O.V., Makarov, E.M. & Luhrmann, R. The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20, 2553–2563 (2001).

    Article  CAS  Google Scholar 

  20. Pena, V., Liu, S., Bujnicki, J.M., Luhrmann, R. & Wahl, M.C. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell 25, 615–624 (2007).

    Article  CAS  Google Scholar 

  21. Zhang, L. et al. Crystal structure of the C-terminal domain of splicing factor Prp8 carrying retinitis pigmentosa mutants. Protein Sci. 16, 1024–1031 (2007).

    Article  CAS  Google Scholar 

  22. Wilkinson, C.R. et al. Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr. Biol. 14, 2283–2288 (2004).

    Article  CAS  Google Scholar 

  23. Raghunathan, P.L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998).

    Article  CAS  Google Scholar 

  24. Stevens, S.W. et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9, 31–44 (2002).

    Article  CAS  Google Scholar 

  25. Beal, R., Deveraux, Q., Xia, G., Rechsteiner, M. & Pickart, C. Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc. Natl. Acad. Sci. USA 93, 861–866 (1996).

    Article  CAS  Google Scholar 

  26. Sloper-Mould, K.E., Jemc, J.C., Pickart, C.M. & Hicke, L. Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489 (2001).

    Article  CAS  Google Scholar 

  27. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    Article  CAS  Google Scholar 

  28. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  29. Ecker, D.J. et al. Gene synthesis, expression, structures, and functional activities of site-specific mutants of ubiquitin. J. Biol. Chem. 262, 14213–14221 (1987).

    CAS  PubMed  Google Scholar 

  30. Wilkinson, K.D. & Audhya, T.K. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. J. Biol. Chem. 256, 9235–9241 (1981).

    CAS  PubMed  Google Scholar 

  31. Lee, D.H. & Goldberg, A.L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998).

    Article  CAS  Google Scholar 

  32. Grainger, R.J. & Beggs, J.D. Prp8 protein: at the heart of the spliceosome. RNA 11, 533–557 (2005).

    Article  CAS  Google Scholar 

  33. Verma, R. et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306, 117–120 (2004).

    Article  CAS  Google Scholar 

  34. Stevens, S.W. et al. Biochemical and genetic analyses of the U5, U6, and U4/U6U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. RNA 7, 1543–1553 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, D.H. & Rossi, J.J. The first ATPase domain of the yeast 246-kDa protein is required for in vivo unwinding of the U4/U6 duplex. RNA 5, 959–971 (1999).

    Article  CAS  Google Scholar 

  36. Laggerbauer, B., Achsel, T. & Luhrmann, R. The human U5–200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl. Acad. Sci. USA 95, 4188–4192 (1998).

    Article  CAS  Google Scholar 

  37. van Nues, R.W. & Beggs, J.D. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157, 1451–1467 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hershko, A. & Rose, I.A. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc. Natl. Acad. Sci. USA 84, 1829–1833 (1987).

    Article  CAS  Google Scholar 

  39. Schnell, J.D. & Hicke, L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278, 35857–35860 (2003).

    Article  CAS  Google Scholar 

  40. Boon, K.-L., Norman, C.M., Grainger, R.J., Newman, A.J. & Beggs, J.D. Prp8p dissection reveals domain structure and protein interaction sites. RNA 12, 198–205 (2006).

    Article  CAS  Google Scholar 

  41. Liu, S., Rauhut, R., Vornlocher, H.P. & Luhrmann, R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA 12, 1418–1430 (2006).

    Article  CAS  Google Scholar 

  42. Chan, S.P., Kao, D.I., Tsai, W.Y. & Cheng, S.C. The Prp19p-associated complex in spliceosome activation. Science 302, 279–282 (2003).

    Article  CAS  Google Scholar 

  43. Brenner, T.J. & Guthrie, C. Genetic analysis reveals a role for the C-terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation. Genetics 170, 1063–1080 (2005).

    Article  CAS  Google Scholar 

  44. Bartels, C., Klatt, C., Luhrmann, R. & Fabrizio, P. The ribosomal translocase homologue Snu114p is involved in unwinding U4/U6 RNA during activation of the spliceosome. EMBO Rep. 3, 875–880 (2002).

    Article  CAS  Google Scholar 

  45. Bartels, C., Urlaub, H., Luhrmann, R. & Fabrizio, P. Mutagenesis suggests several roles of Snu114p in pre-mRNA splicing. J. Biol. Chem. 278, 28324–28334 (2003).

    Article  CAS  Google Scholar 

  46. Lin, R.J., Newman, A.J., Cheng, S.C. & Abelson, J. Yeast mRNA splicing in vitro. J. Biol. Chem. 260, 14780–14792 (1985).

    CAS  PubMed  Google Scholar 

  47. Cheng, S.C. & Abelson, J. Spliceosome assembly in yeast. Genes Dev. 1, 1014–1027 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hicke and D. Finley for strains and plasmids, J. Beggs for anti-Prp8 antibodies and the Drug Synthesis & Chemistry Branch of the National Cancer Institute for ubistatin A. We are grateful to L. Hicke, S. Prakash and members of the Sontheimer and Staley laboratories for advice and discussions, to S. Stevens (University of Texas, Austin) for communicating unpublished results and to M. French, D. Golden, J. Pellino, S. Prakash and J. Preall for critical reading of this manuscript. This work was supported by a US National Institutes of Health grant (GM62264) to J.P.S. and a US National Science Foundation CAREER Award (MCB-0093003) and a US National Institutes of Health grant (GM072830) to E.J.S.

Author information

Authors and Affiliations

Authors

Contributions

P.B., E.C.S., X.H., J.A.W., J.P.S. and E.J.S. designed the experiments; P.B., E.C.S., X.H. and J.A.W. performed the experiments; P.B., E.C.S., X.H., J.A.W., J.P.S. and E.J.S. analyzed the data; and P.B., E.C.S., J.A.W., J.P.S. and E.J.S. wrote the paper.

Corresponding author

Correspondence to Erik J Sontheimer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Results and Supplementary Methods (PDF 9352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellare, P., Small, E., Huang, X. et al. A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 15, 444–451 (2008). https://doi.org/10.1038/nsmb.1401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing