Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif

Abstract

The histone H3 lysine 4 demethylase RBP2 contains a DNA binding domain, the AT-rich interaction domain (ARID). We solved the structure of ARID by NMR, identified its DNA binding motif (CCGCCC) and characterized the binding contacts. Immunofluorescence and luciferase assays indicated that ARID is required for RBP2 demethylase activity in cells and that DNA recognition is essential to regulate transcription.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ARID is required for RBP2 demethylase activity.
Figure 2: RBP2 ARID specifically binds to the CCGCCC motif in the BRD2 promoter.
Figure 3: Structure and function of the ARID domain of RBP2.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Klose, R.J. et al. Cell 128, 889–900 (2007).

    Article  CAS  Google Scholar 

  2. Christensen, J. et al. Cell 128, 1063–1076 (2007).

    Article  CAS  Google Scholar 

  3. Benevolenskaya, E.V., Murray, H.L., Branton, P., Young, R.A. & Kaelin, W.G., Jr. Mol. Cell 18, 623–635 (2005).

    Article  CAS  Google Scholar 

  4. Chan, S.W. & Hong, W. J. Biol. Chem. 276, 28402–28412 (2001).

    Article  CAS  Google Scholar 

  5. Hayakawa, T. et al. Genes Cells 12, 811–826 (2007).

    CAS  PubMed  Google Scholar 

  6. Kortschak, R.D., Tucker, P.W. & Saint, R. Trends Biochem. Sci. 25, 294–299 (2000).

    Article  CAS  Google Scholar 

  7. Herrscher, R.F. et al. Genes Dev. 9, 3067–3082 (1995).

    Article  CAS  Google Scholar 

  8. Gregory, S.L., Kortschak, R.D., Kalionis, B. & Saint, R. Mol. Cell. Biol. 16, 792–799 (1996).

    Article  CAS  Google Scholar 

  9. Whitson, R.H., Huang, T. & Itakura, K. Biochem. Biophys. Res. Commun. 258, 326–331 (1999).

    Article  CAS  Google Scholar 

  10. Collins, R.T., Furukawa, T., Tanese, N. & Treisman, J.E. EMBO J. 18, 7029–7040 (1999).

    Article  CAS  Google Scholar 

  11. Dallas, P.B. et al. Mol. Cell. Biol. 20, 3137–3146 (2000).

    Article  CAS  Google Scholar 

  12. Yuan, Y.C., Whitson, R.H., Liu, Q., Itakura, K. & Chen, Y. Nat. Struct. Biol. 5, 959–964 (1998).

    Article  CAS  Google Scholar 

  13. Iwahara, J., Iwahara, M., Daughdrill, G.W., Ford, J. & Clubb, R.T. EMBO J. 21, 1197–1209 (2002).

    Article  CAS  Google Scholar 

  14. Kim, S., Zhang, Z., Upchurch, S., Isern, N. & Chen, Y. J. Biol. Chem. 279, 16670–16676 (2004).

    Article  CAS  Google Scholar 

  15. Patsialou, A., Wilsker, D. & Moran, E. Nucleic Acids Res. 33, 66–80 (2005).

    Article  CAS  Google Scholar 

  16. Scibetta, A.G. et al. Mol. Cell. Biol. 27, 7220–7235 (2007).

    Article  CAS  Google Scholar 

  17. Lee, M.G., Norman, J., Shilatifard, A. & Shiekhattar, R. Cell 128, 877–887 (2007).

    Article  CAS  Google Scholar 

  18. Yamane, K. et al. Mol. Cell 25, 801–812 (2007).

    Article  CAS  Google Scholar 

  19. Iwahara, J. & Clubb, R.T. EMBO J. 18, 6084–6094 (1999).

    Article  CAS  Google Scholar 

  20. Luscombe, N.M., Laskowski, R.A. & Thornton, J.M. Nucleic Acids Res. 29, 2860–2874 (2001).

    Article  CAS  Google Scholar 

  21. Molinari, E., Gilman, M. & Natesan, S. EMBO J. 18, 6439–6447 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Lamarche and H.-M. Shih for useful discussion, W. Hong at the Institute of Molecular and Cell Biology, Singapore, for providing RBP2 plasmids, and W.G. Kaelin, Jr. at Harvard Medical School, Boston, for BRD2 promoter construct and the RBP2 antibody. NMR was performed at Campus Chemical Instrument Center of Ohio State University and the National Research Program for Genomic Medicine (Taiwan) NMR Core. This work was supported by funding from the Genomics Research Center (to L.-J.J. and M.-D.T.), and research grant DOH96-TD-G-111-003 from National Research Program for Genomic Medicine of Taiwan (to L.-J.J.) and CA69472 from US National Institutes of Health (to M.-D.T.).

Author information

Authors and Affiliations

Authors

Contributions

S.T., Y.-T.W., L.-J.J. and M.-D.T. designed the research; S.T., Y.-C.T., C.Y., M.-Y.C., A.-N.C. and P.-H.L. performed the research; S.T., L.-J.J. and M.-D.T. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Li-Jung Juan or Ming-Daw Tsai.

Supplementary information

Supplementary Text and Figures

Supplementary figures 1–6, Tables 1–3 and Methods (PDF 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, S., Teng, YC., Yuan, C. et al. The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif. Nat Struct Mol Biol 15, 419–421 (2008). https://doi.org/10.1038/nsmb.1400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing